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Sets 

• A collection of object (with 
the same type) 
–{1,2,3,…} 
–{1/2,2/3,3/4,…} 
–{Pen, Pencil, Book} 
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• Defining a set: 
–By listing (enumerating) the 
elements (for finite sets) 
•{Pen, Pencil, Book} 

–By explicit description of the 
elements  
(usually for infinite sets) 
•{X/Y | X, Y ∈ N, X=Y-1} 
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• Subset: R is subset of S if 
every element of R are coming 
also element in S. 
–R={2,3} 
–S={1,2,3} 
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• Power set: P is the power set 
of S (denoted as 2S) if it 
includes all subsets of S. 

• P={{}, 
{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3
}} 
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• Null Set (or Empty set or void set ) :A 
set having no element is called an 
empty set or void set .It is denoted by ɸ 
or { }  

• Example :  
• A={x: x is an even number not divisible 

by 2} 
• B={x: x is a real number x2=-1} 
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• Singleton Set: A set having only one 
element is called a singleton set. 

• Example : A={ x: x is prime minister of 
India} 

• B={2} 
• Pair Set : A set having two elements is 

called a pair set. 
• Example:{(1,2) ,(0,3),(4,9)} etc 
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• Finite Set: A set having a finite number 
of elements i. e  a set ,where counting 
elements is possible is called as a finite 
set. 

• Examples: A={1,2,4,6} is a finite set 
because it has four elements 
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• Infinite Set: A set having a infinite 
number of elements i. e  a set ,where 
counting elements is impossible is 
called as an infinite set. 

• Examples : A={x: x is a set of all natural 
numbers } 

• B={set of all points on the arc of a 
circle} 
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• Equal Sets: Two Sets A and B are said be 
equal ,if every element of A is in B and 
every element of b is in A and we write 
A≠B 

• Example; The elements of a set may be 
listed in any order thus ,{1,2,3}={2,3,1} etc 

• Equivalent sets : Two finite sets A and B 
are said to be equivalent if they have the 
same number of elements .we write A~B 
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• Universal set: Any set which is super 
set of all the sets under consideration 
is known as the universal set and is 
either denoted by Ω or S or U 

• For Example Let A ={1,2,3} ,B={3,4,5,6} 
        and C={0,1} 
• We take S={0,1,2,3,4,5,6,7,8,9} 
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Laws of Operations 

• 1.i) AUA=A ii) A U ɸ=A  iii) A    A=A 
      iv) A   ɸ = ɸ  
Commutative Laws: 
i) A UB  =B U A  
ii) A    B  = B    A 
Associative Laws : 
i) (A UB)UC  = A U (BUC) 
ii) (A    B)     C= A   (B    C) 
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• Distributive Laws  
• i) A U ( B   C)= (AUB)    (AUC)  
• ii) A   (BUC) = (A   B)U(A    C) 

 
• De-Morgan’s Laws : 
• i) (AUB)’=A’    B’ 
• ii) (A   B)’ =A’UB’ 
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Some of Important Results 

• 1. A UB =ɸ A       ɸ  and B= ɸ 
• 2.A- B= ɸ                   
• 3.A-B=         . 
• 4. 
•       

BA ⊆
cBA 

)CA()BA()CB(A.7
)CA(U)BA()CB(A.6
)CA()BA()BUC(A.5

ABBA cc
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Venn Diagrams 

• A Sub sets    

U 

A 

B 

BA ⊂
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• Union of Sets: Let AUB=B ,whole area 
represented by B represents AUB 
 

U 

A B 
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• AU B when neither  
 
 

ABnorBA ⊂⊂
U 

A B 



Quantitative Aptitude & Business 
Statistics: Sets,Relations and 

Functions 

19 

• AUB when A and B are disjoint sets 
 U 

A B 
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• Intersection of Sets BA 

A 

B 

BA 
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BA 

A B 

U 

BA 
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• When A and B  disjoints they are null 
set  

A B 

U 
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• Difference of Sets 
• A-B represents the are of A that is not 

in B 
U 

B 

A 

A B 

U 
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• A-B ,When A and B are disjoint  

U 

A B 
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• A’ or Ac 

A 

U 
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• AU(BUC) 
U 

A 

B 

C 
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A B 

C 
C)BA( 

C)BA( 
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• A∆B=(A-B)U(B-A) 

A B 

U 
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Example 

• In a school there are 20 teachers who 
teach mathematics or physics .of 
these ,12 teach mathematics and 4 
teach physics and mathematics. How 
many teach Physics; 

• Solution: 
• n(AUB)=n (A) +n (B) -n (A   B) 
                                =20-12+4=12 
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Example 

• In a group of 50 people ,35 speak Hindi 
,25 speak both English as well as Hindi 
and all the speak at least one of two 
languages. How many speak English 
and not Hindi? How many people speak 
English? 
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n(H)=35 
n (E   H)=25  n( HUE)=50 

n(E)=? 
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Solution 
• Given that n (HUE)=50,n(H)=35, 
• n(H    E)=25 
• n (HUE)=n( H)+ n (E-H) 
• 50=35+ n (E-H)=15 
• Thus the number of persons  speak English and 

not Hindi is 15  
• Hence the no. of persons who speaks 

English=40 
• n (HUE)=n (H) +n (E)-n (H     E) 
•  50=35+n(E)-25=40 
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Relations 
• Ordered Pair: Two elements  a and b 

listed in a specific order pair, denoted 
by (a,b) 

• Two order pairs (a,b) and (c,d) are said 
to be equal iff a=c and b=d 

• Relation in a set : A relation between 
two sets A and B is a sub set of AXB 
and is denoted by R 

• Thus                  ,we write x R y, iff(x,y) 
€R  x R y read as x is related to y 

BAR ×⊆
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Domain and Range of Relation 

• The Domain D of the relation R is 
defined as the set of all the first 
elements of the ordered pairs which 
belong to R i.e  

• D={x: (x,y) €R for x €A} 
• The range E of the relation R is defined 

as the set of all second elements of the 
ordered pairs which belong to R i.e 

• E={y; (x,y) €R ,for y €B}  
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Different types of Relations 

• Inverse Relation: Let R be a Relation 
from the set A to the set B  ,then the 
inverse relation R-1from the set B to the 
set A is defined by 

• R-1={(b,a) : (a,b) €R} 
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Example 

• Let A={1,2,3} ,B={a,b} 
• And R={(1,a),(1,b),(3,a),(2,b)} be a 

relation from A to B 
• Then inverse relation of R is  

 
• R-1={(a,1),(b,1),(a,3),(b,2)} 
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• Identity Relation: Let R be a relation 
from the set A is said to be identity 
relation ,generally denoted by IA, if 

•  IA={(x,x) :x€A} 
• Example: Let A={2,4,6} then  
• IA={(x,x):2,2)(4,4),(6,6)}is an identity 

relation from in A 
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• Universal Relations : A relation R from 
A to B is said to be universal relation if  

• R=AXB 
• Example : Let A={1,2,3} then  
• R =AXA= 
• ={(1,1)(1, 2),(1,3)(2,1)(2,2),(2,3)(3,1) 
• (3,2),(3,3) } is a universal relation in A  
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• Reflexive Relation :Let R be a relation R 
in a set A, then R is called reflexive 
relation if (a,a) €R for all a€A 

• In other words ,R is reflexive relation if 
every element of A is related itself. 

• Symmetric Relations: Let R be a 
relation R in a set A, then R is called 
Symmetric relation if (a,b) €R     (b,a) €R  
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• Transitive Relations: Let R be a relation 
R in a set A, then R is called transitive 
relation if (a,b) €R  and (b,c) €R   (a,c) €R 

• Equivalence Relations :Let R be a 
relation in set A .if  

• 1)R is reflexive  
• 2) R is Symmetric 
• 3.R is Transitive 
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Definition 

Function  A relation in which each 
element of the domain ( x value) is 
paired with exactly one element of the 
range (y value). 
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• The Set Definition of a Function: 
 
Given two non-empty sets X and Y, 

a function from X to Y is a 
correspondence or association 
that assigns each element of set 
X to exactly one element of set Y. 

What is a function? 
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The Domain and the Range 

• Domain is the 
STARTING POINT 

 

• Range is the 
ENDING POINT 

DOMAIN!!! RANGE!!! 
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Example 1 
1 
5 
7 

-1 

0 

2 

11 

Relation  {(1, 0), (5, 2), (7, 2), (-1, 11)} 
Domain  {1, 5, 7, -1} 
Range  {0, 2, 11} 
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Various types of Functions 

• One-one function : A function f:A   B is 
said to be one-one if f(a1)=f(a2),implies for 
all (a1,a2) €A is also called injective. 

• On to function (Surjective ) :  
        Range of f =Co-domain  
• Bijective function : A function f; A to B 

is one-one and on-to function then it is 
called bijective function . 
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• Identity function: Let A be a non-empty  
  set .Then the function I is defined by I: A 

to A : I (x) = x for all x €A  is called an 
identity function on A .It is a one-to-one 
onto function . 

Constant function :Let f: A to B ,defined 
in such a way that all the elements in A 
have the same image in B ,then f is said 
to be constant function. The range of 
constant function is singleton. 
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Example of 
CORRESPONDENCE 

(student, grade) 
SET 

X 
SET 

Y 
A 95 
B 85 
C 86 
D 76 
E 100 
F 90 
G 81 

A 
B 
C 
D 
E 
F 
G 

86 
95 
85 
81 
100 
90 
76 

One-to-One CORRESPONDENCE 
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On to function 

 

b 

1 

2 

3 

4 

1 

2 

a 

c 

d 

A B 
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Examples of Not a Functions 

 
A B f 
1 

2 

3 

4 

5 

6 
7 

8 8 

B 
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Examples of Not a Functions 

 
A B f 

1 

2 

3 
4 

5 

6 

5 

7 

8 
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• Equal functions: Two functions f and g 
are said to be equal ,written as f=g ,if 
they have the same domain and they 
satisfy the condition f(x)=g(x) 

• Inverse function :Let f be a one one on 
to function from A to B ,Let y be the 
arbitrary element of B ,we may define 
the function ,denoted by 

    f-1 :B to A  : f-1(y)=x  iff  f(x)=y 
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• Composite functions: Let f; A to B and g: B 
to C be two functions from A to C which 
maps an element x €A into g ( f( x)) €C 

 is called composite functions f and 
g and is written as g of 

Example Let A ={1,3,5},B={3,9,15,21} 
C={2,8,14,20,24}then  
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• f={(1,3),(3,9),(5,15)} 
• g={(3,2),(9,8),(15,4),(21,20)} 
• Then g o f is the function 

={(1,2),(3,8),(5,14)} 
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Function Operations 
g(x) = 3x + 2 f(x) = x2 + 2x + 1 

f(x) + g(x) =  

f(x) - g(x) =  

f(x) • g(x) =  

x2 + 2x + 1 + 3x + 2 

(x2 + 2x + 1) - (3x + 2) 

=    x2 + 5x + 3 

=    x2 - x - 1 
(x2 + 2x + 1) • (3x + 2) 

=    3x3 + 2x2 + 6x2 + 4x + 3x + 2 
=    3x3 + 8x2 + 7x + 2 

f(x) ÷ g(x) =  (x2 + 2x + 1) 
(3x + 2) 

Domain?  

{ }3
2,: −≠∈ xRxx

{ }Rxx ∈:

{ }Rxx ∈:

{ }Rxx ∈:
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Composite Functions 
g(x) = 3x + 2 f(x) = x2 + 2x + 1 

f(g(x)) =  

g(f(x))  =  

=   (3x+2)2 + 2(3x+2) + 1 

=   3(x2 + 2x + 1) + 2 

=    9x2 + 12x + 4 + 6x + 4 + 1 

=   3x2 + 6x + 3 + 2 

Domain?  

{ }Rxx ∈:

{ }Rxx ∈:

f(3x+2) 

=    9x2 + 18x + 9 

g(x2 + 2x + 1) 

=   3x2 + 6x + 5 
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Composite Functions 
g(x) = x - 3 f(x) = x2 - 4x + 5 

f(g(x)) =  

g(f(x))  =  

=   (x-3)2 - 4(x-3) + 5 

=   (x2 - 4x + 5) - 3 

=    x2 - 6x + 9 - 4x + 12 + 5 

=   x2 - 4x + 5 - 3 

Domain?  

{ }Rxx ∈:

{ }Rxx ∈:

f(x-3) 

=    x2 - 10x + 26 

g(x2 - 4x + 5) 

=   x2 - 4x + 2 
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Composite Functions 
f(x) = x2 + 3x + 5 

f(g(x)) =  
=   (        )2 + 3(        ) + 5 
= 

Domain?  

[ )∞+,3

f(        ) 

= 

3)( −= xxg

3−x
3−x 3−x

5333 +−+− xx
332 −++ xx

x – 3 > 0 
x  > 3 
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Composite Functions 
f(x) = x2 + 3x + 5 

g(f(x))  =  
= 
=    x2 + 3x + 5 - 3 

Domain?  
g(x2 + 3x + 5) 

= 

3)( −= xxg

( ) 3−

232 ++ xx

( ] [ )∞+−−∞− ,23, x2 + 3x + 2 > 0 
(x + 2)(x + 3)  > 0 

-2 -3 

x2 + 3x + 5 
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• 1.If P = {1,2,3,4} and  Q = {2,4,6} then 
PUQ 

• A) {1,2,3,6} 
• B) {1,4,6}  
• C) {1,2,3,4,6}  
• D) None of these.  
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• 1.If P = {1,2,3,4} and  Q = {2,4,6} then 
PUQ 

• A) {1,2,3,6} 
• B) {1,4,6}  
• C) {1,2,3,4,6}  
• D) None of these.  
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• 2.If A has 70 elements, B has 32 elements 
and A   B has 22 elements then AUB is  

• A) 60 
• B) 124 
• C) 80. 
• D) None of these 
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• 2.If A has 70 elements, B has 32 elements 
and A   B has 22 elements then AUB is  

• A) 60 
• B) 124 
• C) 80. 
• D) None of these 
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• 3. The number of subsets of the set 
{1,2,3,4} is  

• A) 13 
• B) 12 
• C) 16 
• D) 15 
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• 3. The number of subsets of the set 
{1,2,3,4} is  

• A) 13 
• B) 12 
• C) 16 
• D) 15 
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• 4. If A = {1, 2, 3, 4} and B = {5, 6, 7}, then 
cardinal number of A X B is  

• A) 4 
• B) 7 
• C) 12 
• D) None of these  
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• 4. If A = {1, 2, 3, 4} and B = {5, 6, 7}, then 
cardinal number of A X B is  

• A) 4 
• B) 7 
• C) 12 
• D) None of these  
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• 5. In a group of 20 children, 8 drink tea but 
not coffee and 13 like tea. The number of 
children drinking coffee but not tea is  

• A) 6   
• B) 7 
• C) 1 
• D) None of these 
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• 5. In a group of 20 children, 8 drink tea but 
not coffee and 13 like tea. The number of 
children drinking coffee but not tea is  

• A) 6   
• B) 7 
• C) 1 
• D) None of these 



Quantitative Aptitude & Business 
Statistics: Sets,Relations and 

Functions 

69 

• 6. Find the f o g for the functions f (x) =x2, 
g (x) = x+ 1 

• A) x2 (x+1)  
• B) x2 

• C) x+1 
• D) (x+1)2 
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• 6. Find the f o g for the functions f (x) =x2, 
g (x) = x+ 1 

• A) x2 (x+1)  
• B) x2 

• C) x+1 
• D) (x+1)2 
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• 7. If P is a set of natural number then  
• P    P’ is  
• A) φ. 
   B) 0 
• C) Sample Space 
• D) (PUP’)’ 
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• 7. If P is a set of natural number then  
• P    P’ is  
• A) φ. 
   B) 0 
• C) Sample Space 
• D) (PUP’)’ 
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• 8. "Is greater than" over the set of all 
natural number if known as  

• A) Transitive  
• B) Symmetric 
• C) Reflexive  
• D) Equivalence 
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• 8. "Is greater than" over the set of all 
natural number if known as  

• A) Transitive  
• B) Symmetric 
• C) Reflexive  
• D) Equivalence 
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• 9. A function f(x) is an even function, if  
• A) –f(x) = f(x))  
• B) f(–x) = f(x) 
• C) f(–x) = –f(x)  
• D) None of these  
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• 9. A function f(x) is an even function, if  
• A) –f(x) = f(x))  
• B) f(–x) = f(x) 
• C) f(–x) = –f(x)  
• D) None of these  
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• 10.If A = {1, 2, 3, 4} and B = {5, 6, 7}, then 
cardinal number of the set A×B is _____  

• A) 7 
• B) 1 
• C) 12 
• D) None of these  
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• 10.If A = {1, 2, 3, 4} and B = {5, 6, 7}, then 
cardinal number of the set A×B is _____  

• A) 7 
• B) 1 
• C) 12 
• D) None of these  



THE END 

Sets ,Relations and 
Functions 
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