Graphs

- "Graphs" are the mathematical and computer science abstraction that capture many shared and common concepts of real-life objects such as
- networks, e.g.
- water
- electricity
- internet
- road maps
- timetabling

Graphs

- In CS/Maths "graphs" has a specific meaning
- e.g. is NOT the same meaning as in "plot a graph of $\sin (x)$ against $x^{\prime \prime}$
- Many problems in CS/AI can be reduced to problems in graph theory,
- gives a good way to share results, methods \& implementations across many areas

Terminology of Graphs

- A Graph consists of a set V of nodes, and a set E of edges
- Node
- has a unique label for identification
- Edge
- connects two nodes
- any two nodes have at most one edge between them
- usually forbid "self-edges" : edges from a node back to itself
- can be a
- "directed edge": e.g. "from A to B" - a "one-way street"
- "undirected edge": e.g. "between A and B" - a "standard street"

Graph Example

- This is not a map!
- The positions of the nodes do not matter, only their interconnections
- E.g. London Underground "Map" gives interconnections, but not true locations

Graph Example

- Crossing of edges has no meaning
- A-D and B-E cross in the picture but they do not interconnect
- These two pictures are the same graph

Terminology of Graphs

- Path
- connected sequence of edges:
- e.g. A to B to F to C to G
- usually not allowed to use the same node (or edge) twice
- if the edges are directed then the path has to follow the directions of the edges. E.g. follow the one-way streets on a map

"Reachable"

Node B is said to be "reachable" from node A if and only if

 there is a path from A to B- Relevance to real-world:
- many search problems are questions about whether or not some "goal" is reachable from some "start" node
- part of maintaining the internet topology is ensuring that any node (site) is reachable from any other site
- a design factor in the internet was that nodes stay reachable even if some links are broken
- e.g. in the event of nuclear war

Connected Graphs

- Connected Graph. Definition:
- for any two nodes there is a path between them
- i.e. any node is reachable from any other node
- E.g. this graph is connected

Connected Graphs

- E.g. this graph is disconnected - There is no path from A to B

Cycles

- Definition: a cycle is a path that goes in a loop from a node back to itself, and without using the same node twice
- E.g. A-B-E-A in

Tree

- A tree is a graph
- that is connected
- but becomes disconnected if you remove any edge ("cut the edge")
- Matches "nature"
- real trees are connected
- cut any branch then the tree falls into two pieces

Tree: Example

- This is a tree

Acyclic Graphs

- Defn: An "acyclic graph" has no cycles
- Alternative definition:
- A tree is a graph that is
- connected, and
- acyclic

Trees

- Question: Why is a "acyclic" equivalent to "becomes disconnected on any cut"?

- Suppose we cut edge A-B
- Graph stays connected

Trees

- A Tree is connected: given any two nodes A and B there exists at least one path between them
- Question: Given a tree, and any two nodes A and B, is the path between them unique? or might there be pairs of nodes that have more than one path between them?
- Suppose nodes E and F have two distinct paths P1 and P2 between them:
- Using P1 followed by reverse(P2), we would be able to construct a cycle.
- But trees are acyclic, hence, paths between nodes of a tree must be unique

Trees

- A tree is a graph that:

1. is connected but becomes disconnected on removing any edge
2. is connected and acyclic
3. has precisely one path between any two nodes

- The above 3 definitions are equivalent
- Suggestion: become comfortable enough with the definitions for this equivalence to be "self-evident"

Rooted Trees

- Often in trees have a special node called the "root"
- E.g.

Rooted Trees

- Often in trees have a special node called the "root"
- Usually also give edges a direction away from the root
- e.g.

Rooted Trees

- Often, on making a picture of a tree
- Pick up the tree by the root
- let it hang, and shake it a bit

But in practice

- you don't usually get the pretty version
- programs have to use "messy" representations

Rooted Trees: Jargon

- The nodes directly below a node are called its children
- e.g. H and E are children of B
- B is the "parent" of H
- H and E are "siblings"
- Children, children of children, etc are "descendents"
- D is a descendent of B
- Parents,parents of parents, etc are "ancestors"
- B is an ancestor of D
- A node without children is called a leaf node (or terminal node)
- e.g. G is a leaf node

Rooted Tree : Example

- File systems are rooted trees
- (Suggestion: When thinking/studying search and it becomes too abstract, then filesystems provide a concrete example that might make it easier to understand)
- DOS/Windows $\mathrm{C}: \backslash$ is the root (of the C drive)
- Unix "/" is the root
- there is even a "root" user - the one that has enough privileges to modify the root directory (and all others)

Rooted Tree : Example

- File systems are rooted trees
- nodes $=$ files or folders (a.k.a. directories)
- edges = links from a folder to the files/folders that it contains
- "links" are addresses on the hard drive

Rooted Tree : Example

- Actual layout on hard drive will be a mess

Rooted Tree : Example

- Note: there might be a lot of data on the hard drive that has no valid link to it
- removing a file means just remove the link to it
- can still be on the hard-drive but you cannot reach it by following links from the root directory
- scanning the hard drive for a string does not tell you whether the string occurs in the filesystem
- E.g. 'del $\backslash B \backslash E \backslash A^{\prime}$ (or unix 'rm /B/E/A') gives

Trees: Branching factor

- The branching factor of a node is just the number of branches emerging from it - its number of children
- Branching factor of the tree itself is (usually): largest branching factor of any node
- (Might also read about an "effective branching factor" - some form of average over the nodes)

Trees: $b=2$

- If the largest branching factor is two then we have a "binary tree"

Trees: $b=1$

- If the largest branching factor is one then we have a "linked list"
- These are often used in programming as a "container": a way to store a collection of objects

Aside: Doubly Linked Lists

- Take a linked list and also add edges from each (non-root) node to its parent
- Used in programming as a "container":
- can easily "walk" in both directions

Trees: Depth

- The depth, d, of a node is just the number of edges it is away from the root node
- The depth of a tree is the depth of the deepest node
- in this case, depth=4

Tree Sizes

- Suppose we have a tree with
- branching factor b
- depth d
- What is the maximum number of nodes it can have?

Tree Sizes

- Suppose branching factor $b=2$

d	nodes at $\mathrm{d}, 2^{\mathrm{d}}$	nodes at d or less
0	1	1
1	2	3
2	4	7
3	8	15
4	16	31
5	32	63
6	64	127

Sizes of Trees

- Pattern seen in binary tree:
"nodes at d or less" = "nodes at d+1" - 1

$$
=2^{\mathrm{d}+1}-1=\mathrm{O}\left(2^{\mathrm{d}}\right)
$$

- The number of nodes grows exponentially
- Another manifestation of the "Combinatorial Explosion"
- Similarly, for a general tree
- number of nodes is $O\left(b^{d}\right)$
- but, remember "big O" gives an upper bound,
- real trees might have a lot fewer nodes
- Trees are generally very "leaf-heavy" - a large fraction of the nodes are leaves
- e.g. on your file system you probably have far more files than folders

Sizes of Trees: Branching Factor

Increasing b rapidly increases the tree size:

d	nodes at $d, b=2,2^{d}$	nodes at $d, b=3,3^{d}$
0	1	1
1	2	3
2	4	9
3	8	27
4	16	81
5	32	243
6	64	729

Effects of Tree Sizes

- If possible try to work with trees with
- smaller branching factor
- smaller depth
- Be careful when programming that your memory requirements do not explode

Summary

- Definitions of
- graphs
- path
- connected
- cycles, and acyclic
- tree, and rooted tree
- Trees grow exponentially with depth

Questions?

