Graphs

- "Graphs" are the mathematical and computer science abstraction that capture many shared and common concepts of real-life objects such as
 - networks, e.g.
 - water
 - electricity
 - internet
 - road maps
 - timetabling

Graphs

- In CS/Maths "graphs" has a specific meaning
 - e.g. is NOT the same meaning as in "plot a graph of sin(x) against x"
- Many problems in CS/AI can be reduced to problems in graph theory,
 - gives a good way to share results, methods
 & implementations across many areas

Terminology of Graphs

- A Graph consists of a set V of nodes, and a set E of edges
- Node
 - has a unique label for identification
- Edge
 - connects two nodes
 - any two nodes have at most one edge between them
 - usually forbid "self-edges" : edges from a node back to itself
 - can be a
 - "directed edge": e.g. "from A to B" a "one-way street"
 - "undirected edge": e.g. "between A and B" a "standard street"

Graph Example

- This is not a map!
- The positions of the nodes do not matter, only their interconnections
- E.g. London Underground "Map" gives interconnections, but not true locations

Graph Example

- Crossing of edges has no meaning
 - A-D and B-E cross in the picture but they do not interconnect
- These two pictures are the same graph

Terminology of Graphs

Β

- Path
 - connected sequence of edges:

E

- e.g. A to B to F to C to G
- usually not allowed to use the same node (or edge) twice

C

 if the edges are directed then the path has to follow the directions of the edges. E.g. follow the one-way streets on a map

"Reachable"

Node B is said to be "reachable" from node A if and only if there is a path from A to B

- Relevance to real-world:
 - many search problems are questions about whether or not some "goal" is reachable from some "start" node
 - part of maintaining the internet topology is ensuring that any node (site) is reachable from any other site
 - a design factor in the internet was that nodes stay reachable even if some links are broken
 - e.g. in the event of nuclear war

Connected Graphs

- Connected Graph. Definition:
 - for any two nodes there is a path between them
 - i.e. any node is reachable from any other node
- E.g. this graph is connected

Connected Graphs

- E.g. this graph is disconnected
- There is no path from A to B

E

• E.g. A-B-E-A in

- A tree is a graph
 - that is connected
 - but becomes disconnected if you remove any edge ("cut the edge")
- Matches "nature"
 - real trees are connected
 - cut any branch then the tree falls into two pieces

Tree: Example

• This is a tree

Acyclic Graphs

Defn: An "acyclic graph" has no cycles

- Alternative definition:
- A tree is a graph that is
 - connected, and
 - acyclic

- Suppose we cut edge A-B
- Graph stays connected

Trees

- A Tree is connected: given any two nodes A and B there exists at least one path between them
- Question: Given a tree, and any two nodes A and B, is the path between them unique? or might there be pairs of nodes that have more than one path between them?
- Suppose nodes E and F have two distinct paths P1 and P2 between them:
- Using P1 followed by reverse(P2), we would be able to construct a cycle.
- But trees are acyclic, hence, paths between nodes of a tree must be unique

- A tree is a graph that:
 - 1. is connected but becomes disconnected on removing any edge
 - 2. is connected and acyclic
 - 3. has precisely one path between any two nodes
- The above 3 definitions are equivalent
- Suggestion: become comfortable enough with the definitions for this equivalence to be "self-evident"

Rooted Trees

 Often in trees have a special node called the "root"

E

• E.g.

Rooted Trees

- Often in trees have a special node called the "root"
- Usually also give edges a direction away from the root
- e.g.

Rooted Trees

B

H

- Often, on making a picture of a tree
- Pick up the tree by the root
 - let it hang, and shake it a bit

But in practice

- you don't usually get the pretty version
- programs have to use "messy" representations

Rooted Trees: Jargon

Η

- The nodes directly below a node are called its children
 - e.g. H and E are children of B
 - B is the "parent" of H
 - H and E are "siblings"
- Children, children of children, etc are "descendents"
 - D is a descendent of B
- Parents, parents of parents, etc are "ancestors"
 - B is an ancestor of D
- A node without children is called a leaf node (or terminal node)
 - e.g. G is a leaf node

Rooted Tree : Example

- File systems are rooted trees
- (Suggestion: When thinking/studying search and it becomes too abstract, then filesystems provide a concrete example that might make it easier to understand)
- DOS/Windows C:\ is the root (of the C drive)
- Unix "/" is the root
 - there is even a "root" user the one that has enough privileges to modify the root directory (and all others)

Rooted Tree : Example

- File systems are rooted trees
 - nodes = files or folders (a.k.a. directories)
 - edges = links from a folder to the files/folders that it contains
 - "links" are addresses on the hard drive

B\E\I

Rooted Tree : Example

R/E

DL

Actual layout on hard drive will be a mess

B\

B\E\I

Rooted Tree : Example

- Note: there might be a lot of data on the hard drive that has no valid link to it
 - removing a file means just remove the link to it
 - can still be on the hard-drive but you cannot reach it by following links from the root directory
 - scanning the hard drive for a string does not tell you whether the string occurs in the filesystem

B\E

 $- E.g. 'del \B\E\A' (or unix 'rm /B/E/A') gives$

Trees: Branching factor

- The branching factor of a node is just the number of branches emerging from it – its number of children
- Branching factor of the tree itself is (usually): largest branching factor of any node
- (Might also read about an "effective branching factor" – some form of average over the nodes)

Trees: b=2

 If the largest branching factor is two then we have a "binary tree"

Trees: b=1

- If the largest branching factor is one then we have a "linked list"
- These are often used in programming as a "container": a way to store a collection of objects

Aside: Doubly Linked Lists

- Take a linked list and also add edges from each (non-root) node to its parent
- Used in programming as a "container":
 - can easily "walk" in both directions

Trees: Depth

- The depth, d, of a node is just the number of edges it is away from the root node
- The depth of a tree is the depth of the deepest node
 - in this case, depth=4

Tree Sizes

- Suppose we have a tree with
 - branching factor b
 - depth d
- What is the maximum number of nodes it can have?

Tree Sizes

• Suppose branching factor b = 2

d	nodes at d, 2 ^d	nodes at d or less
0	1	1
1	2	3
2	4	7
3	8	15
4	16	31
5	32	63
6	64 🧼 🚽	127

Sizes of Trees

- Pattern seen in binary tree: "nodes at d or less" = "nodes at d+1" - 1 = 2^{d+1}-1 = O(2^d)
- The number of nodes grows exponentially
- Another manifestation of the "Combinatorial Explosion"
- Similarly, for a general tree
 - number of nodes is O(b^d)
 - but, remember "big O" gives an upper bound,
 - real trees might have a lot fewer nodes
- Trees are generally very "leaf-heavy" a large fraction of the nodes are leaves
 - e.g. on your file system you probably have far more files than folders

Sizes of Trees: Branching Factor

Increasing b rapidly increases the tree size:

d	nodes at d, b=2, 2 ^d	nodes at d, b=3, 3^d
0	1	1
1	2	3
2	4	9
3	8	27
4	16	81
5	32	243
6	64	729

Effects of Tree Sizes

- If possible try to work with trees with
 - smaller branching factor
 - smaller depth
- Be careful when programming that your memory requirements do not explode

Summary

- Definitions of
 - graphs
 - path
 - connected
 - cycles, and acyclic
 - tree, and rooted tree
- Trees grow exponentially with depth

Questions?

