
Graphs

• “Graphs” are the mathematical and
computer science abstraction that
capture many shared and common
concepts of real-life objects such as
– networks, e.g.

• water

• electricity

• internet

– road maps

– timetabling

Graphs

• In CS/Maths “graphs” has a specific
meaning

– e.g. is NOT the same meaning as in “plot a
graph of sin(x) against x”

• Many problems in CS/AI can be reduced
to problems in graph theory,

– gives a good way to share results, methods
& implementations across many areas

Terminology of Graphs

• A Graph consists of a set V of nodes, and a set E of
edges

• Node
– has a unique label for identification

• Edge
– connects two nodes
– any two nodes have at most one edge between them
– usually forbid “self-edges” : edges from a node back to itself
– can be a

• “directed edge”: e.g. “from A to B” – a “one-way street”
• “undirected edge”: e.g. “between A and B” – a “standard street”

Graph Example

• This is not a map!

• The positions of the
nodes do not
matter, only their
interconnections

• E.g. London
Underground “Map”
gives
interconnections,
but not true
locations

B

C

D

E

F

G

A

Graph Example

• Crossing of
edges has no
meaning
– A-D and B-E

cross in the
picture but they
do not
interconnect

• These two
pictures are the
same graph

B

C
D

E

F G

A

B

C
D

E

F

G

A

Terminology of Graphs

• Path

– connected sequence of edges:

– e.g. A to B to F to C to G

– usually not allowed to use the same node (or edge) twice

– if the edges are directed then the path has to follow the
directions of the edges. E.g. follow the one-way streets on
a map

B

C
D

E

F

G

A

“Reachable”

Node B is said to be “reachable” from node A
if and only if

there is a path from A to B

• Relevance to real-world:
– many search problems are questions about whether or not

some “goal” is reachable from some “start” node
– part of maintaining the internet topology is ensuring that

any node (site) is reachable from any other site
– a design factor in the internet was that nodes stay reachable

even if some links are broken
• e.g. in the event of nuclear war

Connected Graphs

• Connected Graph. Definition:
– for any two nodes there is a path between them

– i.e. any node is reachable from any other node

• E.g. this graph is connected

B

C
D

E

F

G

A

Connected Graphs

• E.g. this graph is disconnected

• There is no path from A to B

B

C
D

E

F

G

A

Cycles

• Definition: a cycle is a path that goes in
a loop from a node back to itself, and
without using the same node twice

• E.g. A-B-E-A in

B

C
D

E

F

G

A

Tree

• A tree is a graph

– that is connected

– but becomes disconnected if you remove
any edge (“cut the edge”)

• Matches “nature”

– real trees are connected

– cut any branch then the tree falls into two
pieces

Tree: Example

• This is a tree

B

C
D

E

F

G

A

H

I

J

Acyclic Graphs

• Defn: An “acyclic graph” has no cycles

• Alternative definition:

• A tree is a graph that is

– connected, and

– acyclic

Trees

• Question: Why is a “acyclic” equivalent
to “becomes disconnected on any cut”?

B

C
D

E

F

G

A

• Suppose we cut edge A-B

• Graph stays connected

Trees

• A Tree is connected: given any two nodes A and B
there exists at least one path between them

• Question: Given a tree, and any two nodes A and B,
is the path between them unique? or might there be
pairs of nodes that have more than one path
between them?

• Suppose nodes E and F have two distinct paths P1
and P2 between them:

• Using P1 followed by reverse(P2), we would be able
to construct a cycle.

• But trees are acyclic, hence, paths between nodes of
a tree must be unique

B

D

E

F A

P1(E,F)

B

D

E

F A

P2(E,F)

B

D

E

F A

“P1(E,F)+P2(F,E)”

Trees

• A tree is a graph that:

1. is connected but becomes disconnected on
removing any edge

2. is connected and acyclic

3. has precisely one path between any two nodes

• The above 3 definitions are equivalent

• Suggestion: become comfortable enough
with the definitions for this equivalence to
be “self-evident”

Rooted Trees

• Often in trees have a special node
called the “root”

• E.g.

J

B

C
D

E

F

G

A

H

I

Rooted Trees

• Often in trees have a special node called the “root”

• Usually also give edges a direction away from the
root

• e.g.

J

B

C
D

E

F

G

A

H

I

Rooted Trees

• Often, on making a picture of a tree

• Pick up the tree by the root

– let it hang, and shake it a bit
J B C

D

E

F

G

A

H

I

J

B

C
D

E

F

G

A

H

I

But in practice

• you don’t usually get the pretty version

• programs have to use “messy”
representations

Rooted Trees: Jargon

• The nodes directly below a node
are called its children
– e.g. H and E are children of B
– B is the “parent” of H
– H and E are “siblings”

• Children, children of children, etc
are “descendents”
– D is a descendent of B

• Parents,parents of parents, etc
are “ancestors”
– B is an ancestor of D

• A node without children is called
a leaf node (or terminal node)
– e.g. G is a leaf node

J B C

D

E

F

G

A

H

I

Rooted Tree : Example

• File systems are rooted trees

• (Suggestion: When thinking/studying search and it
becomes too abstract, then filesystems provide a
concrete example that might make it easier to
understand)

• DOS/Windows C:\ is the root (of the C drive)

• Unix “/” is the root
– there is even a “root” user – the one that has enough

privileges to modify the root directory (and all others)

Rooted Tree : Example

• File systems are rooted
trees

– nodes = files or folders
(a.k.a. directories)

– edges = links from a
folder to the files/folders
that it contains

– “links” are addresses on
the hard drive

\J \B

\B\E

\

\B\E\A

\B\H

\B\E\I

Rooted Tree : Example

• Actual layout on hard drive will be a
mess

\J \B \B\E \ \B\E\A \B\H \B\E\I

Rooted Tree : Example

• Note: there might be a lot of data on the
hard drive that has no valid link to it

– removing a file means just remove the link to it

– can still be on the hard-drive but you cannot reach
it by following links from the root directory

– scanning the hard drive for a string does not tell
you whether the string occurs in the filesystem

– E.g. ‘del \B\E\A’ (or unix ‘rm /B/E/A’) gives

\J \B \B\E \ \B\E\A \B\H \B\E\I

Trees: Branching factor

• The branching factor of a node is just the
number of branches emerging from it – its
number of children

• Branching factor of the tree itself is (usually):
largest branching factor of any node

• (Might also read about an “effective
branching factor” – some form of average
over the nodes)

Trees: b=2

• If the largest
branching factor is
two then we have a
“binary tree”

J B

E

F

A

H

I

Trees: b=1

• If the largest
branching factor is
one then we have a
“linked list”

• These are often used
in programming as a
“container”: a way to
store a collection of
objects

B

E

F

A

Aside: Doubly Linked Lists

• Take a linked list and
also add edges from
each (non-root) node
to its parent

• Used in programming
as a “container”:

– can easily “walk” in
both directions

B

E

F

A

Trees: Depth

• The depth, d, of a
node is just the
number of edges it is
away from the root
node

• The depth of a tree is
the depth of the
deepest node

– in this case, depth=4

J B C

D

E

F

G

A

H

I

d=0

d=1

d=2

d=3

d=4

Tree Sizes

• Suppose we have a tree with

– branching factor b

– depth d

• What is the maximum number of nodes
it can have?

Tree Sizes

• Suppose branching factor b = 2

 d nodes at d, 2d nodes at d or less

0 1 1

1 2 3

2 4 7

3 8 15

4 16 31

5 32 63

6 64 127

Sizes of Trees

• Pattern seen in binary tree:
“nodes at d or less” = “nodes at d+1” – 1
 = 2d+1-1 = O(2d)

• The number of nodes grows exponentially
• Another manifestation of the “Combinatorial Explosion”

• Similarly, for a general tree

– number of nodes is O(bd)
– but, remember “big O” gives an upper bound,
– real trees might have a lot fewer nodes

• Trees are generally very “leaf-heavy” – a large fraction of the nodes
are leaves
– e.g. on your file system you probably have far more files than folders

Sizes of Trees: Branching Factor

Increasing b rapidly increases the tree size:

 d nodes at d, b=2, 2d nodes at d, b=3, 3d

0 1 1

1 2 3

2 4 9

3 8 27

4 16 81

5 32 243

6 64 729

Effects of Tree Sizes

• If possible try to work with trees with

– smaller branching factor

– smaller depth

• Be careful when programming that your
memory requirements do not explode

Summary

• Definitions of

– graphs

– path

– connected

– cycles, and acyclic

– tree, and rooted tree

• Trees grow exponentially with depth

Questions?

