Graphs

e “Graphs” are the mathematical and
computer science abstraction that
capture many shared and common
concepts of real-life objects such as
— networks, e.q.

e water

o electricity
e internet

— road maps
— timetabling




Graphs

e In CS/Maths “graphs” has a specific
meaning
—e.g. is NOT the same meaning as in “plot a
graph of sin(x) against x”
e Many problems in CS/AI can be reduced
to problems in graph theory,

— gives a good way to share results, methods
& implementations across many areas




Terminology of Graphs

e A Graph consists of a set V of nodes, and a set E of
edges

e Node
— has a unique label for identification

e Edge
— connects two nodes
— any two nodes have at most one edge between them

— usually forbid “self-edges” : edges from a node back to itself
— can be a

e “directed edge”: e.g. “from A to B” — a “one-way street”

e “undirected edge”: e.g. "between A and B” — a “standard street”



Graph Example

e This is not a map!

e The positions of the
nodes do not
matter, only their
Interconnections

e E.g. London
Underground “Map”
gives
interconnections,
but not true
locations




Graph Example

e Crossing of
edges has no
meaning
— A-D and B-E

cross in the

picture but they
do not
Interconnect

e These two (F) (6)

pictures are the
same graph Q




Terminology of Graphs

Gvae ®

e Path

connected sequence of edges:
eg. AtoBtoFtoCto G
usually not allowed to use the same node (or edge) twice

if the edges are directed then the path has to follow the
directions of the edges. E.g. follow the one-way streets on
a map



“Reachable”

Node B is said to be “reachable” from node A
if and only if
there is a path from A to B

e Relevance to real-world:

— many search problems are questions about whether or not
some “goal” is reachable from some “start” node

— part of maintaining the internet topology is ensuring that
any node (site) is reachable from any other site
- a desi?n factor in the internet was that nodes stay reachable
even if some links are broken
e e.g. in the event of nuclear war



Connected Graphs

e Connected Graph. Definition:
— for any two nodes there is a path between them
— i.e. any node is reachable from any other node

e E.g. this graph is connected




Connected Graphs

e E.qg. this graph is disconnected
e There is no path from Ato B



Cycles

e Definition: a cycle is a path that goes in
a loop from a node back to itself, and
without using the same node twice

e £.g. A-B-E-A In




Tree

o Atreeis a graph
— that is connected
— but becomes disconnected if you remove
any edge (“cut the edge”)
e Matches “nature”
— real trees are connected

— cut any branch then the tree falls into two
pieces



Tree: Example

e This is a tree




Acyclic Graphs

e Defn: An “acyclic graph” has no cycles

e Alternative definition:

e Atree is a graph that is
— connected, and
— acyclic



Trees

e Question: Why is a “acyclic” equivalent
to "becomes disconnected on any cut™?

AF

e Suppose we cut edge A-B
e Graph stays connected




Trees

A Tree is connected: given any two nodes A and B
there exists at least one path between them

Question: Given a tree, and any two nodes A and B,

is the path between them unique? or might there be

Balrs of nodes that have more than one path
etween them?

Suppose nodes E and F have two distinct paths P1
and P2 between them:

Using P1 followed by reverse(P2), we would be able
to construct a cycle.

But trees are acyclic, hence, paths between nodes of
a tree must be unique



e ©

P1(E F)+P2(F,E)”



Trees

e Atreeis a graph that:

1. is connected but becomes disconnected on
removing any edge

2. is connected and acyclic
3. has precisely one path between any two nodes
e The above 3 definitions are equivalent

e Suggestion: become comfortable enough

with the definitions for this equivalence to
be “self-evident”



Rooted Trees

e Often in trees have a special node
called the “root”

e E£.G.




Rooted Trees

e Often in trees have a special node called the “root”

e Usually also give edges a direction away from the
root

e e.qg.




Rooted Trees

e (Often, on making a picture of a tree

e Pick up the tree by the root
— let it hang, and shake it a bit

But in practice
e you don’t usually get the pretty version

e programs have to use “messy”
representations



Rooted Trees: Jargon

are called its children
— e.g. H and E are children of B

— B s the “parent” of H

— H and E are “siblings” @ a e
Children, children of children, etc

are “descendents”

— D is a descendent of B
Parents,parents of parents, etc Q G @
are “ancestors”

— B is an ancestor of D

The nodes directly below a node G

A node without children is called Q 0
a leaf node (or terminal node)

— e.g. Gis a leaf node



Rooted Tree : Example

File systems are rooted trees

(Suggestion: When thinking/studying search and it
becomes too abstract, then filesystems provide a
concrete example that might make it easier to
understand)

DOS/Windows C:\ is the root (of the C drive)

Unix “/"is the root

— there is even a “root” user — the one that has enough
privileges to modify the root directory (and all others)



Rooted Tree : Example

e File systems are rooted )
trees

— nodes = files or folders @ o

(a.k.a. directories)
— edges = links from a

folder to the files/folders @ @

that it contains

A\

— Ylinks” are addresses on

the hard drive @ @




Rooted Tree : Example

o Actual layout on hard drive will be a
Mess




Rooted Tree : Example

e Note: there might be a lot of data on the
hard drive that has no valid link to it
— removing a file means just remove the link to it

— can still be on the hard-drive but you cannot reach
it by following links from the root directory

— scanning the hard drive for a string does not tell
you whether the string occurs in the filesystem

— E.qg. ‘del \B\E\A" (or unix 'rm /B/E/A’) gives

O™ G Y R



Trees: Branching factor

e The branching factor of a node is just the
number of branches emerging from it — its
number of children

e Branching factor of the tree itself is (usually):
largest branching factor of any node

e (Might also read about an “effective

branching factor” — some form of average
over the nodes)



Trees: b=2

o If the largest
branching factor is
two then we have a
“binary tree”



Trees: b=1

o If the largest
branching factor is
one then we have a
“linked list”

e These are often used
In programming as a
“container”; a way to
store a collection of
objects




Aside: Doubly Linked Lists

e Take a linked list and
also add edges from
each (non-root) node
to its parent

e Used in programming
as a ‘container”:

— can easily “walk” in
both directions




Trees: Depth

e The depth, d, of a
node is just the
number of edges it is
away from the root
node

e The depth of a tree is
the depth of the
deepest node

— in this case, depth=4




Tree Sizes

e Suppose we have a tree with
— branching factor b
—depth d

e \WWhat is the maximum number of nodes
it can have?



Tree Sizes

e Suppose branching factor b = 2

d nodes at d, 29 [nodes at d or less
0 1 1

1 2 3

2 4 7

3 8 15

4 16 31

5 32 63

6 64 127




Sizes of Trees

Pattern seen in binary tree:
“nodes at d or less” = "nodes at d+1" -1
= 2d+1-1 = O(29)
The number of nodes grows exponentially
Another manifestation of the "Combinatorial Explosion”

Similarly, for a general tree
— number of nodes is O(b9)
— but, remember “big O” gives an upper bound,
— real trees might have a lot fewer nodes

Trees are generally very “leaf-heavy” — a large fraction of the nodes
are leaves

— e.g. on your file system you probably have far more files than folders



Sizes of Trees: Branching Factor

Increasing b rapidly increases the tree size:

d nodes at d, b=2, 29 |nodes at d, b=3, 34
0 1 1

1 2 3

2 4 9

3 8 27

4 16 81

5 32 243

6 64 /29




Effects of Tree Sizes

o If possible try to work with trees with
— smaller branching factor
— smaller depth

e Be careful when programming that your
memory requirements do not explode



Summary

e Definitions of
— graphs
— path
— connected
— cycles, and acyclic
— tree, and rooted tree

e Trees grow exponentially with depth



Questions?



