
Graphs 

• “Graphs” are the mathematical and 
computer science abstraction that 
capture many shared and common 
concepts of real-life objects such as 
– networks, e.g. 

• water 

• electricity 

• internet 

– road maps 

– timetabling  



Graphs 

• In CS/Maths “graphs” has a specific 
meaning 

– e.g. is NOT the same meaning as in “plot a 
graph of sin(x) against x” 

• Many problems in CS/AI can be reduced 
to problems in graph theory, 

– gives a good way to share results, methods 
& implementations across many areas 

 



Terminology of Graphs 

• A Graph consists of a set V of  nodes, and a set E of 
edges 

• Node 
– has a unique label for identification 

• Edge 
– connects two nodes  
– any two nodes have at most one edge between them 
– usually forbid “self-edges” : edges from a node back to itself 
– can be a  

• “directed edge”:  e.g. “from A to B” – a “one-way street” 
• “undirected edge”: e.g. “between A and B” – a “standard street” 



Graph Example 

• This is not a map! 

• The positions of the 
nodes do not 
matter, only their 
interconnections 

• E.g. London 
Underground “Map” 
gives 
interconnections, 
but not true 
locations 
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Graph Example 

• Crossing of 
edges has no 
meaning 
–  A-D and B-E 

cross in the 
picture but they 
do not 
interconnect 

• These two 
pictures are the 
same graph 
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Terminology of Graphs 

• Path 

– connected sequence of edges:  

– e.g.    A to B to F to C to G 

– usually not allowed to use the same node (or edge) twice 

– if the edges are directed then the path has to follow the 
directions of the edges.  E.g. follow the one-way streets on 
a map 
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“Reachable” 

Node B is said to be “reachable” from  node A  
if and only if  

there is a path from A to B 
 

• Relevance to real-world: 
– many search problems are questions about whether or not 

some “goal” is reachable from some “start” node 
– part of maintaining the internet topology is ensuring that 

any node (site) is reachable from any other site 
– a design factor in the internet was that nodes stay reachable 

even if some links are broken  
• e.g. in the event of nuclear war 



Connected Graphs 

• Connected Graph.  Definition: 
– for any two nodes there is a path between them 

– i.e. any node is reachable from any other node 

• E.g. this graph is connected 
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Connected Graphs 

• E.g. this graph is disconnected 

• There is no path from A to B 
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Cycles 

• Definition: a cycle is a path that goes in 
a loop from a node back to itself, and 
without using the same node twice  

• E.g. A-B-E-A in 
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Tree 

• A tree is a graph  

– that is connected 

– but becomes disconnected if you remove 
any edge (“cut the edge”) 

• Matches “nature” 

– real trees are connected 

– cut any branch then the tree falls into two 
pieces 



Tree: Example 

• This is a tree 
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Acyclic Graphs 

• Defn: An “acyclic graph” has no cycles 

 

• Alternative definition: 

• A tree is a graph that is 

– connected, and 

– acyclic 

 

 



Trees 

• Question: Why is a “acyclic” equivalent 
to “becomes disconnected on any cut”? 
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• Suppose we cut edge A-B 

• Graph stays connected 



Trees 

• A Tree is connected: given any two nodes A and B 
there exists at least one path between them 

• Question: Given a tree, and any two nodes A and B, 
is the path between them unique? or might there be 
pairs of nodes that have more than one path 
between them? 

• Suppose nodes E  and F have two distinct paths P1 
and P2 between them: 

• Using P1 followed by reverse(P2), we would be able 
to construct a cycle. 

• But trees are acyclic, hence, paths between nodes of 
a tree must be unique 
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Trees 

• A tree is a graph that: 

1. is connected but becomes disconnected on 
removing any edge 

2. is connected and acyclic 

3. has precisely one path between any two nodes 

• The above 3 definitions are equivalent 

• Suggestion: become comfortable enough 
with the definitions for this equivalence to 
be “self-evident” 



Rooted Trees 

• Often in trees have a special node 
called the “root” 

• E.g. 
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Rooted Trees 

• Often in trees have a special node called the “root” 

• Usually also give edges a direction away from the 
root 

• e.g. 
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Rooted Trees 

• Often, on making a picture of a tree 

• Pick up the tree by the root 

– let it hang, and shake it a bit 
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But in practice 

• you don’t usually get the pretty version 

• programs have to use “messy” 
representations 



Rooted Trees: Jargon 

• The nodes directly below a node 
are called its children 
– e.g. H and E are children of B 
– B is the “parent” of H 
– H and E are “siblings” 

• Children, children of children, etc 
are “descendents” 
– D is a descendent of B 

• Parents,parents of parents, etc 
are “ancestors” 
– B is an ancestor of D 

 

• A node without children is called 
a leaf node (or terminal node) 
– e.g. G is a leaf node 
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Rooted Tree : Example 

• File systems are rooted trees 

• (Suggestion: When thinking/studying search and it 
becomes too abstract, then filesystems provide a 
concrete example that might make it easier to 
understand) 

 

• DOS/Windows C:\ is the root (of the C drive) 

 

• Unix   “/” is the root 
– there is even a “root” user – the one that has enough 

privileges to modify the root directory (and all others) 



Rooted Tree : Example 

• File systems are rooted 
trees 

– nodes = files or folders 
(a.k.a. directories) 

– edges = links from a 
folder to the files/folders 
that it contains 

– “links” are addresses on 
the hard drive 
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Rooted Tree : Example 

• Actual layout on hard drive will be a 
mess 
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Rooted Tree : Example 

• Note: there might be a lot of data on the 
hard drive that has no valid link to it 

– removing a file  means   just remove the link to it 

– can still be on the hard-drive but you cannot reach 
it by following links from the root directory 

– scanning the hard drive for a string does not tell 
you whether the string occurs in the filesystem 

– E.g. ‘del \B\E\A’  (or unix ‘rm /B/E/A’) gives 

\J \B \B\E \ \B\E\A \B\H \B\E\I 



Trees: Branching factor 

• The branching factor of a node is just the 
number of branches emerging from it – its 
number of children  
 

• Branching factor of the tree itself is (usually): 
largest branching factor of any node 
 

• (Might also read about an “effective 
branching factor” – some form of average 
over the nodes) 



Trees: b=2 

• If the largest 
branching factor is 
two then we have a 
“binary tree” 
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Trees: b=1 

• If the largest 
branching factor is 
one then we have a 
“linked list” 

• These are often used 
in programming as a 
“container”: a way to 
store a collection of 
objects 
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Aside: Doubly Linked Lists 

• Take a linked list and 
also add edges from 
each (non-root) node 
to its parent 

• Used in programming 
as a “container”: 

– can easily “walk” in 
both directions 
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Trees: Depth 

• The depth, d, of a 
node is just the 
number of edges it is 
away from the root 
node 

• The depth of a tree is 
the depth of the 
deepest node 

– in this case, depth=4 
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Tree Sizes 

• Suppose we have a tree with 

– branching factor b 

– depth d 

• What is the maximum number of nodes 
it can have? 



Tree Sizes 

• Suppose branching factor b = 2 

 d nodes at d, 2d  nodes at d or less 

0 1 1 

1 2 3 

2 4 7 

3 8 15 

4 16 31 

5 32 63 

6 64 127 



Sizes of Trees 

• Pattern seen in binary tree:  
“nodes at d or less” = “nodes at d+1” – 1 
                             = 2d+1-1 = O(2d) 

• The number of nodes grows exponentially 
• Another manifestation of the “Combinatorial Explosion” 

 
• Similarly, for a general tree 

– number of nodes is O(bd) 
– but, remember “big O” gives an upper bound, 
– real trees might have a lot fewer nodes 

 

• Trees are generally very “leaf-heavy” – a large fraction of the nodes 
are leaves  
– e.g. on your file system you probably have far more files than folders 



Sizes of Trees: Branching Factor 

Increasing b rapidly increases the tree size: 

 d nodes at d, b=2, 2d nodes at d, b=3, 3d 

0 1 1 

1 2 3 

2 4 9 

3 8 27 

4 16 81 

5 32 243 

6 64 729 



Effects of Tree Sizes 

• If possible try to work with trees with 

– smaller branching factor 

– smaller depth 

• Be careful when programming that your 
memory requirements do not explode 



Summary 

• Definitions of 

– graphs 

– path 

– connected 

– cycles, and acyclic 

– tree, and rooted tree 

• Trees grow exponentially with depth 



Questions? 

 


