Sequences and Series

Arithmetic

Sequences

Definitions

- Sequence: a list of numbers in a specific order.
- Term: each number in a sequence
- Arithmetic Sequence: a sequence in which each term after the first term is found by adding a constant, called the common difference (d), to the previous term.

Explanations

- $150,300,450,600,750 \ldots$
- The first term of our sequence is 150 , we denote the first term as a_{1}.
-What is a_{2} ?
- $a_{2}: 300$ (a_{2} represents the 2nd term in our sequence)

Explanations

- $a_{3}=$? $a_{4}=$? $a_{5}=$?
- $a_{3}: 450 a_{4}: 600 \quad a_{5}: 750$
- a_{n} represents a general term (nth term) where n can be any number.

Explanations

- Sequences can continue forever. We can calculate as many terms as we want as long as we know the common difference in the sequence.

Explanations

- Find the next three terms in the sequence:
2, 5, 8, 11, 14, —'—.$2,5,8,11,14,17,20,23$ The common difference is?
- 3!!!

Explanations

- To find the common difference (d), just subtract any term from the term that follows it.
- FYI: Common differences can be negative.

Formula

- What if I wanted to find the 50th (a_{50}) term of the sequence $2,5,8,11,14$, ...? Do I really want to add 3 continually until I get there?
- There is a formula for finding the nth term.

Formula

- Let's see if we can figure the formula out on our own.
$a_{1}=2$, to get a_{2} I just add 3 once. To get $a_{3} I$ add 3 to a_{1} twice. To get $a_{4} I$ add 3 to a_{1} three times.

Formula

-What is the relationship between the term we are finding and the number of times I have to add d?

- The number of times I had to add is one less then the term I am looking for.

Formula

- So if I wanted to find a_{50} then how many times would I have to add 3?
- 49
- If I wanted to find a_{193} how many times would I add 3?
- 192

Formula

- So to find a_{50} I need to take d , which is 3 , and add it to my a_{1}, which is 2,49 times. That's a lot of adding.
- But if we think back to elementary school, repetitive adding is just multiplication.

Formula

- $3+3+3+3+3=15$
- We added five terms of three, that is the same as multiplying 5 and 3 .
- So to add three forty-nine times we just multiply 3 and 49.

Formula

- So back to our formula, to find a_{50} we start with $2\left(a_{1}\right)$ and add $3 \cdot 49$. (3 is d and 49 is one less than the term we are looking for) So...
- $a_{50}=2+3(49)=149$
- $a_{50}=2+3(49)$ using this formula we can create a general formula. a_{50} will become a_{n} so we can use it for any term.
- 2 is our a_{1} and 3 is our d.

Formula

- $a_{50}=2+3(49)$
- 49 is one less than the term we are looking for. So if I am using n as the term I am looking for, I multiply d by n-1.

Formula

- Thus my formula for finding any term in an arithmetic sequence is $a_{n}=a_{1}+d(n-1)$. - All you need to know to find any term is the first term in the sequence $\left(a_{1}\right)$ and the common difference.

Example

- Let's go back to our first

 example. Find therm number 16 ?
Example

- $a_{n}=a_{1}+d(n-1)$
- We want to find a_{16}. What is a_{1} ? What is d ? What is $n-1$? $a_{1}=150, d=150$, $n-1=16-1=15$
- So $a_{16}=150+150(15)=$
-\$2400

Example

- $17,10,3,-4,-11,-18, \ldots$
- What is the common difference?
- Subtract any term from the term after it.
- $-4-3=-7$
- $d=-7$
$\cdot 17,10,3,-4,-11,-18, \ldots$

Arithmetic Means: the terms between any two nonconsecutive terms of an arithmetic sequence.

Arithmetic Means

- 17, 10, 3, -4, -11, -18, ... Between 10 and -18 there are three arithmetic means
3, -4, -11.
- Find three arithmetic means between 8 and 14.

Arithmetic Means

- So our sequence must look like 8, __, __, __, 14. In order to find the means we need to know the common difference. We can use our formula to find it.

Arithmetic Means

$$
\text { - } 8,-,-, 14
$$

$$
\text { - } a_{1}=8, a_{5}=14, \& n=5
$$

$$
\cdot 14=8+d(5-1)
$$

$$
14=8+d(4)
$$

subtract 8

- $6=4 d$ divide by 4
- 1.5 = d

Arithmetic Means

- 8, _, —_—. 14 so to find our means we just add 1.5 starting with 8.
8, 9.5, 11, 12.5, 14

Additional Example

- 72 is the _term of the sequence $-5,2,9$, ... We need to find ' n ' which is the term number.
- 72 is $a_{n},-5$ is a_{1}, and 7 is d. Plug it in.

$$
\begin{aligned}
& \text { Additional Example } \\
& \cdot 72=-5+7(n-1) \\
& \cdot 72=-5+7 n-7 \\
& \cdot \\
& 72=-12+7 n \\
& \cdot 84=7 n \\
& \cdot n=12 \\
& \cdot
\end{aligned}
$$

Arithmetic Series

- The African-American celebration of Kwanzaa involves the lighting of candles every night for seven nights. The first night one candle is lit and blown out.

- The second night a new

 candle and the candle from the first night are lit and blown out. The third night a new candle and the two candles from the second night are lit and blown out.- This process continues for the seven nights. We want to know the total number of lightings during the seven nights of celebration.

Arithmetic Series

- The first night one candle was lit, the 2nd night two candles were lit, the 3rd night 3 candles were lit, etc.
- So to find the total number of lightings we would add: $1+2+3+4+5+6+7$

Arithmetic Series

$-1+2+3+4+5+6+7=28$ - Series: the sum of the terms in a sequence.
Arithmetic Series: the sum of the terms in an arithmetic sequence.

Arithmetic Series

- Arithmetic sequence:
$2,4,6,8,10$
Corresponding arith. series:

$$
2+4+6+8+10
$$

- Arith. Sequence: $-8,-3,2,7$
- Arith. Series: $-8+-3+2+7$

Arithmetic Series

- S_{n} is the symbol used to represent the first ' n ' terms of a series.
Given the sequence $1,11,21$,
$31,41,51,61,71$,... find S_{4}
- We add the first four terms $1+11+21+31=64$

Arithmetic Series

- Find S_{8} of the arithmetic sequence $1,2,3,4,5,6,7,8$, 9, 10, ...
$1+2+3+4+5+6+7+8=$ 36

Arithmetic Series

- What if we wanted to find S_{100} for the sequence in the last example. It would be a pain to have to list all the terms and try to add them up.
- Let's figure out a formula!! :)

Sum of Arithmetic Series

- Let's find S_{7} of the sequence $1,2,3,4,5,6,7,8,9$,...
- If we add S_{7} in too different orders we get:
$S_{7}=1+2+3+4+5+6+7$
$S_{7}=7+6+5+4+3+2+1$
$2 S_{7}=8+8+8+8+8+8+8$

Sum of Arithmetic Series $\mathrm{S}_{7}=1+2+3+4+5+6+7$ $S_{T}=7+6+5+4+3+2+1$
 $2 S_{7}=8+8+8+8+8+8+8$
 $2 S_{7}=7(8) \quad 7$ sums of 8
 $S_{7}=7 / 2(8)$

Sumof Arithmetic Series
 $S_{7}=7 / 2$ (8)

- What do these numbers mean?
- 7 is $n, 8$ is the sum of the first and last term $\left(a_{1}+a_{n}\right)$
- So $S_{n}=n /{ }_{2}\left(a_{1}+a_{n}\right)$
- $S_{n}=n / 2\left(a_{1}+a_{n}\right)$
- Find the sum of the first 10 terms of the arithmetic series with $a_{1}=6$ and $a_{10}=51$
$S_{10}=10 / 2(6+51)=5(57)=$ 285

Examples

- Find the sum of the first 50 terms of an arithmetic series with $a_{1}=28$ and $d=-4$
- We need to know n, a_{1}, and a_{50}.
- $n=50, a_{1}=28, a_{50}=$?? We have to find it.

Examples

$a_{50}=28+-4(50-1)=$
$28+-4(49)=28+-196=$
-168
So $n=50, a_{1}=28, \& a_{n}=-168$

- $S_{50}=(50 / 2)(28+-168)=$
$25(-140)=-3500$

Examples

- To write out a series and compute a sum can sometimes be very tedious. Mathematicians often use the greek letter sigma \& summation notation to simplify this task.

Examples

last value of n

$$
\int_{n=1}^{5} n+1_{\text {First value of } n}^{\text {find sequence }}
$$

This means to find the sum of the sums $n+1$ where we plug in the values $1-5$ for n

Examples

$!^{5} n+1$

$n=1$

- Basically we want to find $(1+1)+(2+1)+(3+1)+$
$(4+1)+(5+1)=$
- $2+3+4+5+6=$
- 20

Examples

$$
\text { So }!n+1=20
$$

$$
n=1
$$

$$
\text { Try: }!_{x=2}^{7} 3 x-2
$$

- First we need to plug in the numbers 2-7 for x.

Examples

7

$$
3 x-2
$$

$$
x=2
$$

$$
[3(2)-2]+[3(3)-2]+[3(4)-2]+
$$

$$
[3(5)-2]+[3(6)-2]+[3(7)-2]=
$$

$$
\text { - }(6-2)+(9-2)+(12-2)+(15-2)+
$$

$$
(18-2)+(21-2)=
$$

$\cdot 4+7+10+13+16+19=69$

Geometric

Sequences

GeometricSequence

- What if your pay check started at \$100 a week and doubled every week. What would your salary be after four weeks?

GeometricSequence

- Starting \$100.
- After one week - \$200
- After two weeks - \$400
- After three weeks - \$800
- After four weeks - \$1600.
- These values form a geometric sequence.

Geometric Sequence

Geometric Sequence: a sequence in which each term after the first is found by multiplying the previous term by a constant value called the common ratio.

Heometric Sequence

- Find the first five terms of the geometric sequence with $a_{1}=-3$ and common ratio (r) of 5 .
- $-3,-15,-75,-375,-1875$

Geometric Sequence

- Find the common ratio of the sequence $2,-4,8,-16,32, \ldots$
- To find the common ratio, divide any term by the previous term.
- $8 \div-4=-2$
- $r=-2$

Geometric Sequence

Just like arithmetic sequences, there is a formula for finding any given term in a geometric sequence. Let's figure it out using the pay check example.

Heometric Sequence

To find the 5th term we look

 100 and multiplied it by two four times.- Repeated multiplication is represented using exponents.

Heometric Seauence

- Basically we will take $\$ 100$ and multiply it by 2^{4}
$a_{5}=100 \cdot 2^{4}=1600$
A_{5} is the term we are looking for, 100 was our $a_{1}, 2$ is our common ratio, and 4 is $n-1$.

Examples

- Thus our formula for finding any term of a geometric sequence is $a_{n}=a_{1} \cdot r^{n-1}$ Find the 10 th term of the geometric sequence with $a_{1}=$ 2000 and a common ratio of $1 / 2$.

Enamples $a_{10}=2000 \cdot(1 / 2)^{9}=$ $2000 \cdot 1 / 512=$

- $2000 / 512=500 / 128=250 / 64=$ 125/32
Find the next two terms in the sequence $-64,-16,-4 \ldots$

Examples

- $-64,-16,-4$,
- We need to find the common ratio so we divide any term by the previous term.
- $-16 /-64=1 / 4$
- So we multiply by $1 / 4$ to find the next two terms.

Examples

$\cdot-64,-16,-4,-1,-1 / 4$

Geometric Means

- Just like with arithmetic sequences, the missing terms between two nonconsecutive terms in a geometric sequence are called geometric means.

Geometric Means

- Looking at the geometric sequence $3,12,48,192,768$ the geometric means between 3 and 768 are 12, 48, and 192.
- Find two geometric means between -5 and 625 .

Geometric Means
 - $-5, \ldots, \ldots 25$

- We need to know the common ratio. Since we only know nonconsecutive terms we will have to use the formula and work backwards.

Geometric Means

- $-5, \ldots, \quad, 625$
- 625 is $a_{4},-5$ is a_{1}.
- $625=-5 \cdot r^{4-1} \quad$ divide by -5
- $-125=r^{3}$
take the cube root of both sides
- $-5=r$
-5, HeometricMeans
- Now we just need to multiply by -5 to find the means.
- $-5 \cdot-5=25$
- $-5,25, \ldots, 625$
- $25 \cdot-5=-125$
- $-5,25,-125,625$

Geometric

 Series
Geometric Series

Geometric Series - the sum of the terms of a geometric sequence.
Geo. Sequence: 1, 3, 9, 27, 81 Geo. Series: $1+3+9+27+81$
-What is the sum of the geometric series?

Geometric Series

- $1+3+9+27+81=121$
- The formula for the sum S_{n} of the first n terms of a geometric series is given by

$$
S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r} \text { or } S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Gęometric Series

- Find! - 3(2) ${ }^{n-1}$
- You can actually do it two ways. Let's use the old way.
- Plug in the numbers 1-4 for n and add.
- $\left[-3(2)^{1-1}\right]+\left[-3(2)^{2-1}\right]+\left[-3(2)^{3-}\right.$ $\left.{ }^{1}\right]+\left[-3(2)^{4-1}\right]$

Geometric Series
 - $[-3(1)]+[-3(2)]+[-3(4)]+$ $[-3(8)]=$
 $--3+-6+-12+-24=-45$ The other method is to use the sum of geometric series formula.

$$
\begin{aligned}
& !_{n=1}^{4}-3(2)^{n-1} \text { use } S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& a_{1}=-3, r=2, n=4
\end{aligned}
$$

$$
\begin{aligned}
& !_{n=1}^{4}-3(2)^{n-1} \text { use } S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& a_{1}=-3, r=2, n=4 \\
& S_{4}=\frac{-3\left(1-2^{4}\right)}{1-2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Geometric Series } \\
S_{4} & =\frac{-3\left(1-2^{4}\right)}{1-2} \\
S_{4} & =\frac{-3(1-16)}{-1} \\
S_{4} & =\frac{-3(-15)}{-1}=\frac{45}{-1}=-45
\end{aligned}
$$

