Diode in logic circuits

- The diode used in a lot of circuits such as the AND gate

• The OR gate

Diode in logic circuits

• Diode in rectifier circuits

Transistor in logic circuits

• As amplifier

FILTERS

 It is sometimes desirable to have circuits capable of selectively filtering one frequency or range of frequencies out of a mix of different frequencies in a circuit. A circuit designed to perform this frequency selection is called a filter circuit, or simply a filter.

- A filter is an AC circuit that separates some frequencies from others in within mixedfrequency signals.
- Audio equalizers and crossover networks are two well-known applications of filter circuits.
- A Bode plot is a graph plotting waveform amplitude or phase on one axis and frequency on the other.

Low-pass filters

 By definition, a low-pass filter is a circuit offering easy passage to low-frequency signals and difficult passage to high-frequency signals. There are two basic kinds of circuits capable of accomplishing this objective, and

High-pass filters

• A high-pass filter's task is just the opposite of a low-pass filter: to offer easy passage of a high- frequency signal and difficult passage to a low-frequency signal. As one might expect, the inductive and capacitive versions of the high-pass filter are just the capacitive high-pass filter R_1 ϵ c_1 c_2 ϵ c_1 c_2

Band-pass filters

 There are applications where a particular band, or spread, or frequencies need to be filtered from a wider range of mixed signals. Filter circuits can be designed to accomplish this task by combining the properties of lowpass and high-pass into a single filter. The result is called a band-pass filter. Creating a

Capacitive band-pass filter Low-pass filter section High-pass filter section Source C_2 R_1 2 3 4 200 Ω 1 µF $R_{load} \gtrsim 1 k\Omega$ V_1 1 V $C_1 \Rightarrow$ = 2.5 µF 0 0 0 Inductive band-pass filter High-pass filter section Source Low-pass filter section R_1 L_2 \sim m Liã R_{load}

Band-stop filters

 Also called band-elimination, band-reject, or notch filters, this kind of filter passes all frequencies above and below a particular range set by the component values. Not surprisingly, it can be made out of a low-pass and a high-pass filter, just like the band-pass design, except that this time we connect the two filter s ith each other passes low frequencies Low-pass filter instead of signal Signal High-pass filter passes high frequencies

Resonant filters

 So far, the filter designs we've concentrated on have employed either capacitors or inductors, but never both at the same time.
We should know by now that combinations of L and C will tend to resonate, and this

Series resonant band-stop filter

Problem 1:

- You have a signal that has frequency components at 100Hz or less. The signal is corrupted by a strong signal at 1000Hz. You need to reduce the effect of the 1000Hz signal by a factor of 10. The filter circuit below is proposed.
 - You need to design a filter (in this case, specify a time constant for the filter) that will reduce the 1000 Hz signal by a factor of 10.
 - When you put the entire signal into the filter, how much will the signal at 100Hz be affected?

Problem 2:

- You have a very slowly varying temperature signal that can be considered to have all frequency components below 1Hz. That temperature signal is measured with a sensor that is susceptible to 60Hz noise (from the power line). Here are the salient facts.
- At room temperature, the temperature sensor has an output of around 0.3v.
- The 60Hz signal has a peak amplitude of 0.1v.
- An RC filter is suggested as shown below.
- The capacitor is 1.0**m**f.
- Determine R so that the 60Hz noise is reduced to .01v.
- Determine how much a 1Hz signal will be affected in your design.

Problem 3:

- You need to filter some noise from a signal. The requirements are as follows.
- The signal has strong varying components that can be as high in frequency as 10 Hz.
- The noise is at 60 Hz.
- The signal must past through the filter without changing by more than 1%.
- Determine the most attenuation that can be achieved for the noise.

Problem 4:

- You need to filter some noise from a signal. The requirements are as follows.
- The signal has strong varying components that can be as high in frequency as 10 Hz.
- The noise is at 60 Hz.
- The signal must past through the filter without changing by more than 1%.
- The noise must be attenuated to less than 10% of the present value.
- Determine if you can use a two stage filter to achieve the specifications.

Integrated Circuits

ARE GROUPED INTO TWO MAJOR CATEGORIES:

1. ANALOG (OR LINEAR) TC'S PRODUCE, AMPLIEY OR RESPOND TO VARIABLE VOLTAGES. ANALOG TC'S INCLUDE MANY KINDS OF AMPLIFIERS, TIMERS, OSCILLATORS AND VOLTAGE REGULATORS.

2. <u>DIGITAL</u> (OR LOGIC) IC'S RESPOND TO OR PRODUCE SIGNALS HAVING ONLY TWO VOLTAGE LEVELS. DIGITAL IC'S INCLUDE MICROPROCESSORS, MEMORIES, MICROCOMPUTERS AND MANY KINDS OF SIMPLER CHIPS.

Digital integrated circuits

NO MATT	ER HOI	N COMP	LICATED,	ALL	DIGITAL	INTEGRATED	
CIRCUITS	ARE	MADE	EROM	SIMPLE	BUILDING	BLOCKS	
CALLED	GATES.	GATES	ARE	LIKE	ELECTRON	ILCALLY CON-	
TROLLED	SWITCH	IFS. T	HEY AI	25 517	THER ON	OR OFF	*****
	• •						61 4

DIODE GATES

