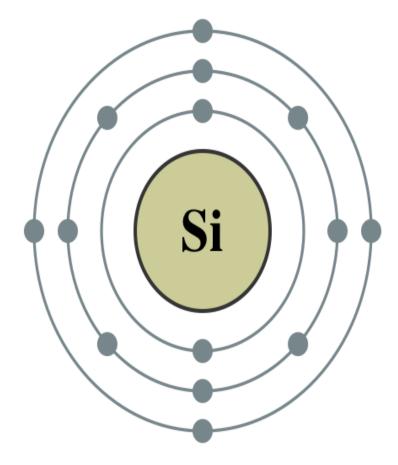
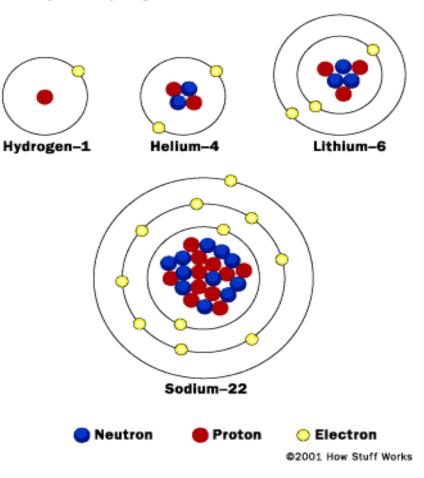
Electronics

Introduction to Electronics

The Electronic system


 Electric system : any technical system is an assembly of components that are connected together to form a functioning machine or an operational procedure. An electronic system includes some common used electrical devices such as resistors, capacitors, transformers, inductors, and few classes of semiconductors (diodes, transistors)

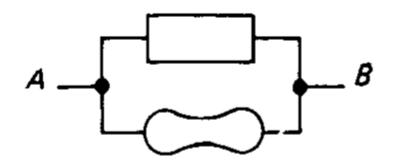
The current in conductor and insulator


Structure of matter. The matter consists of *atoms*, which contain *electrons* and *a nucleus* with *protons* and *neutrons* in a particularly intimate association. The electron has a negative *charge*. The proton has a positive charge equal to the negative charge carried by the electron. The neutron, as its name implies, has no charge; it is electrically neutral. Each element possesses a certain number of protons and an equal number of electrons to keep the atom electrically neutral. Each element is characterized by its number of electrons, or as it is called, its *atomic number*. The electrons are spread out in space around the nucleus in shells, which have been compared to the orbits of the planets round the sun. The electrons can be often stripped off the atom rather easily, leaving it positively charged, naturally, but it is much more difficult to break up the nucleus.

Θ	ELECTRONS	HAVE	A	NEGATIVE	ELECTRICAL	CHARGE.
					ELECTRICAL	
0	NEUTRONS	HAVE	NO	ELECTRIC	AL CHARGE.	

	11					ر		، للعــَ	وري	، الــد	ـدول	الج	(7		AL LIN	2.0	1
11	1 H میدروجین 1.008				ب	ما ما			فلــز	à 🚺								lA 2 He
- I	ء لنا ليترم	iy Be Matur			اتل ز				به فلز نفلز			1	। ह ह 23.54	اد دربون کربون	اه ۲ الم درجون	1٦ ٥	الا تترور	هیلیرم 4.063 10 No نیون
٣	۵.941 11 Na 22.890	8.012 12 Mg (5.000 24.305	٣.	ب ۽	ەب	٦ب	ب٧	-	٨ب		ب، ب	۰۲	10.311 13 Al بربیزر 26.562	الکان 14 51 نیلیکرن 26,365	14.007 15 الع المرسلير 30.974	15.999 10 S نریخ 32.066 34	18.998 17 Cl کلرر 35.483 15	26.150 10 Ar کرر 39.940 36
٤	19 الا برتامبر 29.090 37	20 Ca (Ju-J)5 40.070 38	21 Sc مکاندیر م 44.900 39	22 Ti بینانیزم 47.55	21 لا الاليدير 50.943 41	کم Cr البریا 11.300	25 Mn 34,933 43	26 Fe المديد 55.647 44	27 Co کربالت 66.933 45	28 NI ن کار 50.49 46	29 Cu 63.540 47	30 Zn خارصين 65.39 45	31 Ga ریالیہ 19.723	32 Ge 72.01 50	33 AB 2433 74.922 51	54 Se بيلينوب 72.94	15 Br (1 79,904 53	36 الاr ناباري 83.80 54
•	۵۲ Rb (ویانور (۵۵,468 ۵۵	عد Sr ستر رنٹیوم 17.42 36	57 Y (H.H. 88.006 57	میں Zr زرگرنیزم 91.224 72	Nb (20.001 73	مع Mo موليدتوم 05.04 74	43 Tc لکنینیور (۱۹) 75	Ru دوتينيوم 101.67 76	Rh (3033) 102,906 77	Pd 194,034 196,42 78	Ag Lusi 197,943 79	Cd کادیوم 112.411 80	In (240) 114010 81	Sn بليدير 118.7% 82	Sb التيمون 121.75 13	Te بېلوريو 177.60 84	1 126.004 15	يبرن بيرن 131.2 86
-	Cs (145) 132,905 87	Ba (36)4 137.327	La ۲۵۵رم ۱۵۵٬۹۹۴ ۵۹	Hf (علازهر) 178.45 104	Ta ,Jidu 183.85 105	W تجمینی 183.85 106	Re (3013) 186,207 107	Os اورنجور) 190.23 108	الا ریدین 192,22 109	Pt 557% 195.08 110	Au 	Hg زنرز 200.55 112	TI تاليبر ب 204.383	Pb رمسامر 207.2	Bi پڑمرٹ 208,990	Po برلوتيرم (2009)	At استاتین (219)	Rn البرن (223)
v	Fr نرتیرم (223)	Ra (1997) 226.025	Ac اکټټور م 227.028	Rf رڈرئوردیرم (201)	Ha ماهنير ب (292)	Sg (2003) (2003)	Ns نيلسبر مريز (262)	Hs هامیرم (266)	Mt (264)	Uun برتینیلیوم (200)	Uuu برتینیز ب (272)	Uub (xiti) (272)						
	— العدد ال رمز الع				58 Ce (31,0** 140,115	59 Pr 148.998	60 Nd 144,24	61 Pm بوینیور (145)	62 Sm بالماريزم 150.36	63 EU (343-345 151,965	64 Gd جادرليتر م 157,25	65 Tb (Jet) 158,925	ده Dy دسروزیوم 162,50	67 Ho مركيرم 154,500	68 Er 7.00.0 167.534	60 Tm توليرم 100.524	76 Yb (MAR) 173.04	71 للت التشوم 124.3
بتصر	— اسم الم — الكتلة ال	جوين ح	هيدرو.		90 Th توريوم 232.030	91 Pa بررتکیپرم 231.636	92 U بورائيوم 258.029	93 Np بتونيرم 237.648	94 Pu طوتونيوم (244)	95 Am امريكيرم (243)	96 Cm (عدي: (عدي:	۵۶ Bk (کلیو) (247)	98 Cf کاللورنيزم (261)	99 التناثير (252)	100 Fm (ترمور) (257)	101 Md (258)	102 No بریکررم (259)	103 Lr (75)

Isotopes of Hydrogen, Helium, Lithium and Sodium

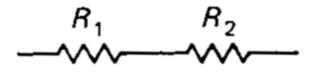

•
I MORE ABOUT FREE ELECTRONS - MANY TRILLIONS
F ELECTRONS CAN REST ON A SURFACE OR TRAVEL
HROUGH SPACE OR MATTER AT NEAR THE SPEED
OF LIGHT (186,000 MILES PER SECOND)!
1 1 2 2 2 2 2
$z = \overline{OOOOOO} = \overline{OOOOOOO}$
RESTING ELECTRONS MOVING ELECTRONS
<u>RESTING ELECTRONS MOVING ELECTRONS</u>
] RESTING ELECTRONS - A GROUP OF NEGATIVE ELECTRONS
CHARGED. SINCE THE ELECTRONS ARE NOT MOVING, THE
SURFACE CAN BE SAID TO HAVE A NEGATIVE STATIC
ELECTRICAL CHARGE.

Voltage, current, and resistance

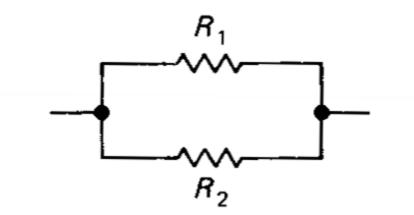
- Voltage : v and sometimes E
- It's equal to the work done to move the electric charge from the negative point to the positive point and it's measured in volt.
- The electron charge is equal to 6*10¹⁸
- Current : I, the rate of flow of electric charge past from the negative to the positive point and measured in ampere or amp

 The same current into point in a circuit equals to the sum of the currents out from the circuit (kirchhoff current law)

• A node is

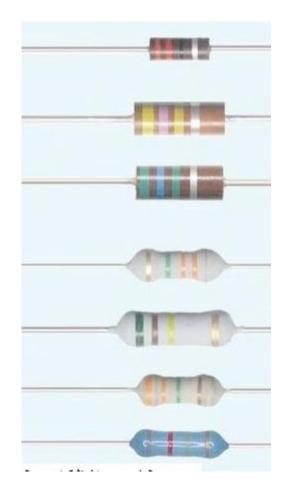


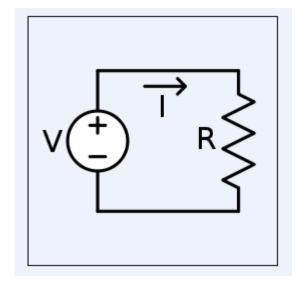
• The sum of voltage drops around any closed circuit is zero (kirchhoff voltage law)


Risistors

I-versus-V characteristics. Resistors (*I* simply proportional to *V*), capacitors (*I* proportional to rate of change of *V*), diodes (*I* flows in only one direction), thermistors (temperature-dependent resistor), photoresistors (light-dependent resistor),

$$R = V/I$$
 —~~~


 $R = R_1 + R_2$



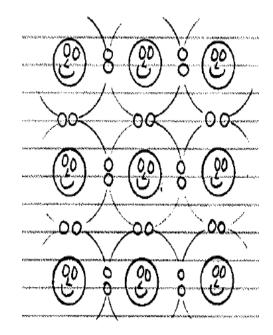
$$R = \frac{R_1 R_2}{R_1 + R_2}$$

Resistance

- 1-It has 2 kinds ,**constant resistance and** variable resistance that I control it by changing its value .
- 2-we can measure it using avometers .
- 3- It's job to decrease the current as a lot of application if don't use resistance the system failure or corrupt .The law wish depend on it is ohm's low V=I*R .V is constant but when R increase the current will decrease so as to the volt must be const

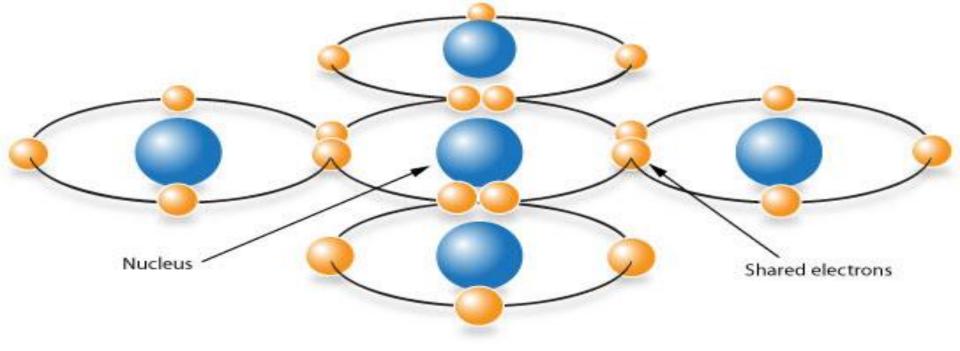
	4-Band- 2%, 5%,				560kΩ±59	% 1
COLOR	1st BAND	2nd BAND	3rd BAND	MULTIPLIER	TOLERA	NCE
Black	0	0	0	1Ω		
Brown	1	1	1	10 Ω	± 1%	(F)
Red	2	2	2	100 Ω	± 2%	(G)
Orange	3	з	З	1ΚΩ		
Yellow	4	4	4	<u>10ΚΩ</u>		
Green	5	5	5	100KQ	±0.5%	(D)
8lue	6	6	6	1MQ	±0.25%	(C)
Violet	7	7	7	10MΩ	±0.10%	(B)
Grey	8	8	8		±0.05%	
White	9	9	9			
Gold				0.1	± 5%	(0)
Silver				0.01	± 10%	(K)
		1		I		

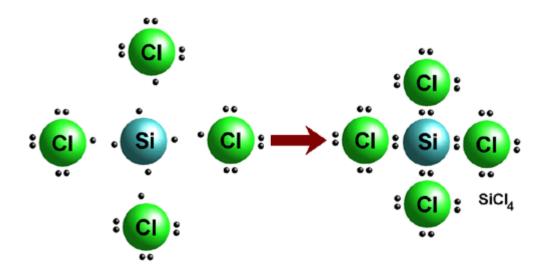
• Calculate the value of the next resistors



Semiconductors

Semiconductors are neither conductors nor insulators. The commonly used semiconductor elements are silicon, germanium, and gallium arsenide. *Silicon* is the most widely used semiconductor material. It has 14 protons and 14 electrons in orbits. An isolated silicon atom has four electrons in the valence bond. *Germanium* has 32 protons, 32 electrons, and 4 valence electrons like silicon.


semiconductors


A **semiconductor** is a material which has electrical conductivity between that of a conductor such as copper and an insulator such as glass. The conductivity of a semiconductor increases with increasing temperature, behavior opposite to that of a metal. Semiconductors can display a range of useful properties such as passing current more easily in one direction than the other. Because the conductive properties of a semiconductor can be modified by controlled addition of impurities or by the application of electrical fields or light, semiconductors are very useful devices for amplification of signals, switching, and energy conversion. Understanding the properties of semiconductors relies on quantum physics to explain the motions of electrons through a lattice of atoms.

Semiconductors

- A **semiconductor** is a material which has electrical conductivity between that of a conductor such as copper and an insulator such as glass. The conductivity of a semiconductor increases with increasing temperature, behavior opposite to that of a metal.
- Semiconductors can display a range of useful properties such as passing current more easily in one direction than the other. Because the conductive properties of a semiconductor can be modified by controlled addition of impurities or by the application of electrical fields or light, semiconductors are very useful devices for amplification of signals, switching, and energy conversion. Understanding the properties of semiconductors relies on quantum physics to explain the motions of electrons through a lattice of atoms.
- Current conduction in a semiconductor occurs via free electrons and "holes", collectively known as charge carriers. Adding impurity atoms to a semiconducting material, known as "doping", greatly increases the number of charge carriers within it. When a doped semiconductor contains excess holes it is called "p-type", and when it contains excess free electrons it is known as "n-type". The semiconductor material used in devices is doped under highly controlled conditions to precisely control the location and concentration of p- and n-type dopants. A single semiconductor crystal can have multiple p- and n-type regions; the p-n junctions between these regions have many useful electronic properties.
- Semiconductors are the foundation of modern electronics, including radio, computers, and telephones. Semiconductor-based electronic components include transistors, solar cells, many kinds of diodes including the light-emitting diode (LED), the silicon controlled rectifier, photodiodes, and digital and analog integrated circuits. Increasing understanding of semiconductor materials and fabrication processes has made possible continuing increases in the complexity and speed of semiconductor devices, an effect known as Moore's Law.

The Semiconductor Industry

- Semiconductor devices such as diodes, transistors and integrated circuits can be found everywhere in our daily lives, in Walkman, televisions, automobiles, washing machines and computers. We have come to rely on them and increasingly have come to expect higher performance at lower cost.
- Personal computers clearly illustrate this trend. Anyone who wants to replace a three to five year old computer finds that the trade-in value of his or her computer is surprising low. On the bright side, one finds that the complexity and performance of the today's personal computers vastly exceeds that of their old computer and that for about the same purchase price, adjusted for inflation.

intrinsic semiconductor

• As a result of the thermal energy present in the material, electrons can break loose from covalent bonds and become free electrons able to move through the solid and contribute to the electrical conductivity. The covalent bonds left behind have an electron vacancy called a hole. Electrons from neighboring covalent bonds can easily move into an adjacent bond with an electron vacancy, or hole, and thus the hold can move from one covalent bond to an adjacent bond. As this process continues, we can say that the hole is moving through the material

Doped semiconductor

 A semiconductor that has had impurity atoms added to modify the electrical conduction characteristics.

Extrinsic semiconductor

 A semiconductor that has been doped with impurities to modify the electrical conduction characteristics.

Hole

 An electron vacancy in a covalent bond between two atoms in a semiconductor.
Holes are mobile charge carriers with an effective charge that is opposite to the charge on an electron.

P-N

- N-type semiconductor: A semiconductor that has been doped with donor impurities to produce the condition that the population of free electrons is greater than the population of holes.
- P-type semiconductor: A semiconductor that has been doped with acceptor impurities to produce the condition that the population of holes is greater than the population of free electrons.