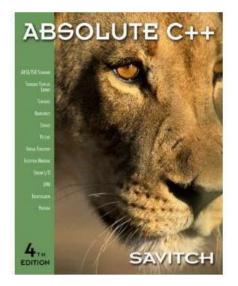
### Structured Programming


## **Course – Information**

- •Structured Programming C++
- •(3 hour lecture + 2 hour lab) a week.
- •Assessment (100)

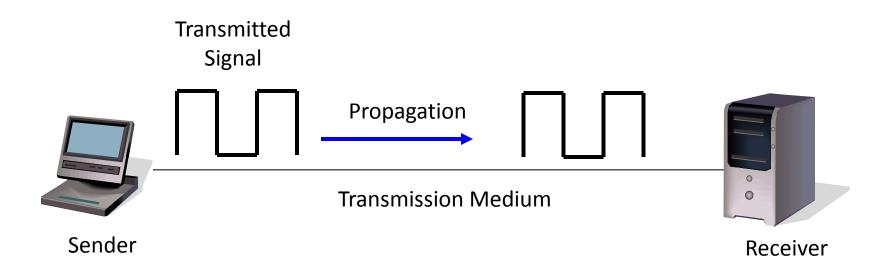
Year Work 10% (During the term) Mid Term Exam 10% (Week 8) Practical Examination 10% (Week 15) Final Exam 70% (Week 16)

### **Course – Text Book and References**

- Absolute C++, 4th edition, Walter Savitch, Addison Wesley, 2009.
- C++ How to program, 7th edition, Deitel and Deitel Pearson, 2010.
- References: ENDLESS list.



### **Course – Outline**

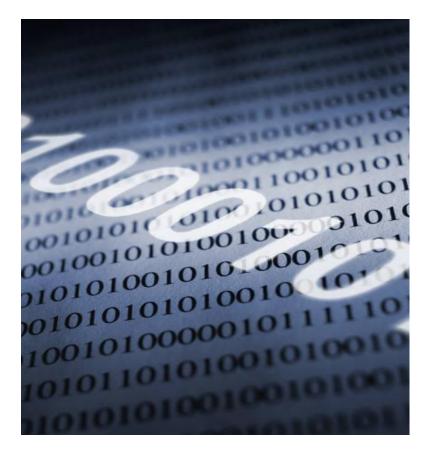

- 1. Introduction
- **2.** Basics
- 3. Control Structures
- 4. Introducing Data Types and Operators
- 5. Creating Conditional Statements
- 6. Creating Iteration Statements
- 7. Functions
- 8. Recursion
- 9. Parameters, Overloading, and Reference
- 10. Arrays
- 11. Strings
- 12. Structures
- 13. Streams and File I/O

### **Binary-Encoded** Data

- Computers store and process data in binary representations
  - Binary means "two"
  - There are only ones and zeros
  - Called bits

### 1101010110001110101100111

### Binary representation of data




## Binary-Encoded Data

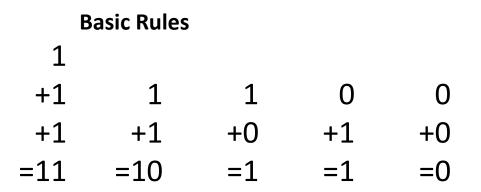
- Non-Binary Data Must be Encoded into Binary
  - Text
  - Integers (whole numbers)
  - Decimal numbers
  - Alternatives (North, South, East, or West, etc.)
  - Graphics
  - Human voice Hello  $\longrightarrow$  11011001...
  - etc.

## **Binary-Encoded Data**

- Some data are inherently binary
  - 48-bit Ethernet addresses
  - 32-bit IP addresses
  - Need no further encoding



# Figure 3-2: Arithmetic with Binary Numbers


#### Binary Arithmetic for Whole Numbers (Integers) (Counting Begins with 0, not 1)

| Integer | Binary |
|---------|--------|
| 0       | 0      |
| 1       | 1      |
| 2       | 10     |
| 3       | 11     |
| 4       | 100    |
| 5       | 101    |
| 6       | 110    |
| 7       | 111    |
| 8       | 1000   |

"There are 10 kinds of people those who understand binary and those who don't"

# Figure 3-2: Arithmetic with Binary Numbers, Continued

**Binary Arithmetic for Binary Numbers** 



# Figure 3-2: Arithmetic with Binary Numbers, Continued

| Binary | Decimal                                                 |
|--------|---------------------------------------------------------|
| 1000   | 8                                                       |
| +1     | +1                                                      |
| =1001  | =9                                                      |
| +1     | +1                                                      |
| =1010  | =10                                                     |
| +1     | +1                                                      |
| =1011  | =11                                                     |
| +1     | +1                                                      |
| =1100  | =12                                                     |
|        | 1000<br>+1<br>=1001<br>+1<br>=1010<br>+1<br>=1011<br>+1 |

#### Figure 3-3: Binary Encoding for Alternatives

Encoding Alternatives (Product number, region, gender, etc.) (N bits can represent 2N Alternatives)

|                | Number of Alternatives    |
|----------------|---------------------------|
| Number of Bits | That Can be Encoded       |
| In Field (N)   | with N bits               |
| 1              | 2 (21)                    |
| 2              | 4 (2 <sup>2</sup> )       |
| 3              | 8 (2 <sup>3</sup> )       |
| 4              | 16 (24)                   |
| 8              | 256 (2 <sup>8</sup> )     |
| 16             | 65,536 (2 <sup>16</sup> ) |
|                |                           |

Each added bit doubles the number of alternatives that can be represented

#### Figure 3-3: Binary Encoding for Alternatives

| Bits | Alternatives        | Examples                                                                                           |
|------|---------------------|----------------------------------------------------------------------------------------------------|
| 1    | 2 <sup>1</sup> =2   | Male = 0, Female = 1                                                                               |
| 2    | 2 <sup>2</sup> =4   | Spring = 00, Summer = 01,<br>Autumn = 10, Winter = 11                                              |
| 8    | 2 <sup>8</sup> =256 | Keyboard characters for U.S.<br>keyboards. Space=00000000, etc.<br>ASCII code actually uses 7 bits |

## Powers of 2

| Bits | Alternatives |
|------|--------------|
| 1    | 2            |
| 2    | 4            |
| 3    | 8            |
| 4    | 16           |
| 5    | 32           |
| 6    | 64           |
| 7    | 128          |
| 8    | 256          |
| 10   | 1,024        |
| 16   | 65,536       |

Each additional bit doubles the number of possibilities

Start with one you know and double or halve until you have what you need

E.g., if you know 8 is 256, 10 must be 4 times as large or 1,024.

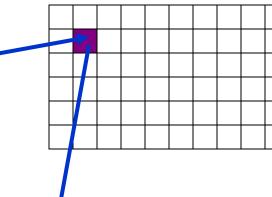
Memorize for 1, 4, 8, and 16 bits

#### Figure 3-3: Binary Encoding for Alternatives

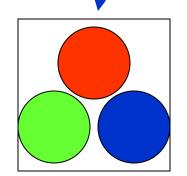
- Quiz
  - How many flavors of ice cream can you represent in half a byte of storage?
  - How many bits do you need to represent 64 flavors of ice cream?

– How many bits do you need to represent 6 sales districts?

### Figure 3-4: ASCII and Extended ASCII


- ASCII Code to Represent Text
  - ASCII is the traditional binary code to represent text data
  - Seven bits per character
    - 2<sup>7</sup> (128) characters possible
  - Sufficient for all keyboard characters (including shifted values)
    - Capital letters (A is 1000001) (A is 65)
    - Lowercase letters (*a* is 1100001) (*a* is 97)
  - Each character is stored in a byte
    - The 8<sup>th</sup> bit in a byte normally is not used

# Figure 3-4: ASCII and Extended ASCII, Continued


- Extended ASCII
  - Used on PCs
  - Uses a full 8 bits per character
  - 2<sup>8</sup> (256) characters possible
  - Extra characters can represent formatting in word processing, etc.
- Converters
  - Text-to-ASCII and Text-to-Extended ASCII
    Converters are Readily Available on the Internet

### **Binary Coding for Graphics Image**

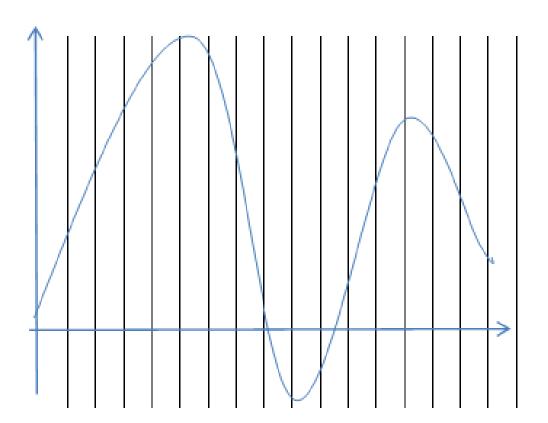
- Pixels
  - 1. Screen is divided into small squares called pixels (picture elements)



 2. Each pixel has three dots—red, green, and blue. Sometimes a black dot too



 JPEG stores one byte per color
 (24 bits total)


This gives 256 intensity levels for each color or 16.8 million colors overall (256<sup>3</sup>)

## Binary Coding for Video

- Video is represented as a sequence of frames.
- Each frame is a graphical image as represented in the previous slid.
- How many frame per second?

## **Binary Coding for sound**

- Digitalization
- Sampling Rate

