
 2000 Prentice Hall, Inc. All rights reserved.

Structured Programming

 2000 Prentice Hall, Inc. All rights reserved.

2

1.1 Introduction

• In this course you will learn

– C and C++

– Structured programming and object oriented programming

 2000 Prentice Hall, Inc. All rights reserved.

3

1.6 Machine Languages, Assembly

Languages, and High-level Languages

• Three types of programming languages

– Machine languages

• Strings of numbers giving machine specific instructions

• Example:

 +1300042774

+1400593419

+1200274027

– Assembly languages

• English-like abbreviations representing elementary computer

operations (translated via assemblers)

• Example:

 LOAD BASEPAY

ADD OVERPAY

STORE GROSSPAY

 2000 Prentice Hall, Inc. All rights reserved.

4

1.6 Machine Languages, Assembly

Languages, and High-level Languages

– High-level languages

• Similar to everyday English, use mathematical notations

(translated via compilers)

• Example:

grossPay = basePay + overTimePay

 2000 Prentice Hall, Inc. All rights reserved.

5

1.7 History of C and C++

• C++ evolved from C

– C evolved from two other programming languages, BCPL

and B

• ANSI C

– Established worldwide standards for C programming

• C++ “spruces up” C

– Provides capabilities for object-oriented programming

• Objects are reusable software components that model things in

the real world

• Object-oriented programs are easy to understand, correct and

modify

 2000 Prentice Hall, Inc. All rights reserved.

6

1.8 C++ Standard Library

• C++ programs

– Built from pieces called classes and functions

• C++ standard library

– Provides rich collections of existing classes and functions for

all programmers to use

 2000 Prentice Hall, Inc. All rights reserved.

7

1.11 Structured Programming

• Structured programming

– Disciplined approach to writing programs

– Clear, easy to test and debug, and easy to modify

• Multitasking

– Many activities to run in parallel

 2000 Prentice Hall, Inc. All rights reserved.

8

1.12 The Key Software Trend: Object

Technology

• Objects

– Reusable software components that model real world items

– Meaningful software units

• Date objects, time objects, paycheck objects, invoice objects,

audio objects, video objects, file objects, record objects, etc.

• Any noun can be represented as an object

– More understandable, better organized and easier to maintain

than procedural programming

– Favor modularity

 2000 Prentice Hall, Inc. All rights reserved.

9

1.13 Basics of a Typical C++ Environment

Phases of C++ Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Loader

Primary

Memory

Program is created in

the editor and stored

on disk.

Preprocessor program

processes the code.

Loader puts program

in memory.

CPU takes each

instruction and

executes it, possibly

storing new data

values as the program

executes.

Compiler

Compiler creates

object code and stores

it on disk.

 Linker links the object

code with the libraries,

creates a.out and

stores it on disk

Editor

Preprocessor

Linker

CPU

Primary

Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

 2000 Prentice Hall, Inc. All rights reserved.

10

1.14 Hardware Trends

• Every year or two computers approximately double

– The amount of memory they contain

• Memory used to execute programs

– The amount of secondary storage they contain

• Secondary storage (such as disk storage) is used to to hold

programs and data over time

– Their processor speeds

• The speed at which computers execute their programs

 2000 Prentice Hall, Inc. All rights reserved.

11

 Basics of a Typical C++ Environment

• Input/output
– cin

• Standard input stream

• Normally keyboard

– cout

• Standard output stream

• Normally computer screen

– cerr

• Standard error stream

• Display error messages

 2000 Prentice Hall, Inc. All rights reserved.

Outline
12

1. Comments

2. Load <iostream>

3. main

3.1 Print "Welcome

to C++\n"

3.2 exit (return 0)

Program Output

 1 // Fig. 1.2: fig01_02.cpp

 2 // A first program in C++

 3 #include <iostream>

 4

 5 int main()

 6 {

 7 std::cout << "Welcome to C++!\n";

 8

 9 return 0; // indicate that program ended successfully

10 }

Welcome to C++!

preprocessor directive

Message to the C++ preprocessor.

Lines beginning with # are preprocessor directives.

#include <iostream> tells the preprocessor to

include the contents of the file <iostream>, which

includes input/output operations (such as printing to

the screen).

Comments

Written between /* and */ block of

multiple lines

 or following a // for single line.

Improve program readability and do not cause the

computer to perform any action.

C++ programs contain one or more functions, one of
which must be main

Parenthesis are used to indicate a function

int means that main "returns" an integer value.

More in Chapter 3.

A left brace { begins the body of every function

and a right brace } ends it.

Prints the string of characters contained between the

quotation marks.

The entire line, including std::cout, the <<

operator, the string "Welcome to C++!\n" and

the semicolon (;), is called a statement.

All statements must end with a semicolon.

return is a way to exit a function

from a function.

return 0, in this case, means that

the program terminated normally.

 2000 Prentice Hall, Inc. All rights reserved.

13

1.19 A Simple Program:

Printing a Line of Text
• std::cout

– Standard output stream object

– “Connected” to the screen

– std:: specifies the "namespace" which cout belongs to

• std:: can be removed through the use of using statements

• <<

– Stream insertion operator

– Value to the right of the operator (right operand) inserted
into output stream (which is connected to the screen)

– std::cout << “Welcome to C++!\n”;

• \

– Escape character

– Indicates that a “special” character is to be output

 2000 Prentice Hall, Inc. All rights reserved.

14

1.19 A Simple Program:

Printing a Line of Text

• There are multiple ways to print text

– Following are more examples

Escape Sequence Description

\n Newline. Position the screen cursor to the

beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next

tab stop.

\r Carriage return. Position the screen cursor to the

beginning of the current line; do not advance to the

next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote

character.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
15

1. Load <iostream>

2. main

2.1 Print "Welcome"

2.2 Print "to C++!"

2.3 newline

2.4 exit (return 0)

Program Output Welcome to C++!

 1 // Fig. 1.4: fig01_04.cpp

 2 // Printing a line with multiple statements

 3 #include <iostream>

 4

 5 int main()

 6 {

 7 std::cout << "Welcome ";

 8 std::cout << "to C++!\n";

 9

10 return 0; // indicate that program ended successfully

11 }

Unless new line '\n' is specified, the text continues

on the same line.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
16

1. Load <iostream>

2. main

2.1 Print "Welcome"

2.2 newline

2.3 Print "to"

2.4 newline

2.5 newline

2.6 Print "C++!"

2.7 newline

2.8 exit (return 0)

Program Output

 1 // Fig. 1.5: fig01_05.cpp

 2 // Printing multiple lines with a single statement

 3 #include <iostream>

 4

 5 int main()

 6 {

 7 std::cout << "Welcome\nto\n\nC++!\n";

 8

 9 return 0; // indicate that program ended successfully

10 }

Welcome

to

C++!

Multiple lines can be printed with one

statement.

 2000 Prentice Hall, Inc. All rights reserved.

17

1.20 Another Simple Program:

Adding Two Integers

• Variables

– Location in memory where a value can be stored for use by a

program

– Must be declared with a name and a data type before they

can be used

– Some common data types are:

• int - integer numbers

• char - characters

• double - floating point numbers

– Example: int myvariable;

• Declares a variable named myvariable of type int

– Example: int variable1, variable2;

• Declares two variables, each of type int

 2000 Prentice Hall, Inc. All rights reserved.

18

1.20 Another Simple Program:

Adding Two Integers
• >> (stream extraction operator)

– When used with std::cin, waits for the user to input a
value and stores the value in the variable to the right of the
operator

– The user types a value, then presses the Enter (Return) key
to send the data to the computer

– Example:

int myVariable;

std::cin >> myVariable;

• Waits for user input, then stores input in myVariable

• = (assignment operator)
– Assigns value to a variable

– Binary operator (has two operands)

– Example:

sum = variable1 + variable2;

 2000 Prentice Hall, Inc. All rights reserved.

Outline
19

1.Load <iostream>

2. main

2.1 Initialize variables
integer1,

integer2, and sum

2.2 Print "Enter

first integer"

 2.2.1 Get input

2.3 Print "Enter

second integer"

 2.3.1 Get input

2.4 Add variables and
put result into sum

2.5 Print "Sum is"

 2.5.1 Output sum

2.6 exit (return 0)

Program Output

 1 // Fig. 1.6: fig01_06.cpp

 2 // Addition program

 3 #include <iostream>

 4

 5 int main()

 6 {

 7 int integer1, integer2, sum; // declaration

 8

 9 std::cout << "Enter first integer\n"; // prompt

10 std::cin >> integer1; // read an integer

11 std::cout << "Enter second integer\n"; // prompt

12 std::cin >> integer2; // read an integer

13 sum = integer1 + integer2; // assignment of sum

14 std::cout << "Sum is " << sum << std::endl; // print sum

15

16 return 0; // indicate that program ended successfully

17 }

Enter first integer

45

Enter second integer

72

Sum is 117

Notice how std::cin is used to get user

input.

Variables can be output using std::cout << variableName.

std::endl flushes the buffer and

prints a newline.

 2000 Prentice Hall, Inc. All rights reserved.

20

1.21 Memory Concepts

• Variable names

– Correspond to locations in the computer's memory

– Every variable has a name, a type, a size and a value

– Whenever a new value is placed into a variable, it replaces

the previous value - it is destroyed

– Reading variables from memory does not change them

• A visual representation

integer1 45

 2000 Prentice Hall, Inc. All rights reserved.

21

1.22 Arithmetic

• Arithmetic calculations

– Use * for multiplication and / for division

– Integer division truncates remainder

• 7 / 5 evaluates to 1

– Modulus operator returns the remainder

• 7 % 5 evaluates to 2

• Operator precedence

– Some arithmetic operators act before others (i.e.,

multiplication before addition)

• Be sure to use parenthesis when needed

– Example: Find the average of three variables a, b and c

• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

 2000 Prentice Hall, Inc. All rights reserved.

22

1.22 Arithmetic

• Arithmetic operators:

• Rules of operator precedence:

C++ opera tion Arithmetic
opera tor

Algebra ic
expression

C++ expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the

expression in the innermost pair is evaluated first. If

there are several pairs of parentheses “on the same level”

(i.e., not nested), they are evaluated left to right.

*, /, or % Multiplication Division

Modulus

Evaluated second. If there are several, they re

evaluated left to right.

+ or - Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

 2000 Prentice Hall, Inc. All rights reserved.

23

1.23 Decision Making: Equality and

Relational Operators

• if structure

– Test conditions truth or falsity. If condition met execute,

otherwise ignore

• Equality and relational operators

– Lower precedence than arithmetic operators

• Table of relational operators on next slide

 2000 Prentice Hall, Inc. All rights reserved.

24

1.23 Decision Making: Equality and

Relational Operators

Standard a lgebra ic

equa lity opera tor or

rela tiona l opera tor

C++ equa lity

or rela tiona l

opera tor

Examp le

of C++

cond ition

Meaning of

C++ cond ition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y

 2000 Prentice Hall, Inc. All rights reserved.

25

using statements

• using statements

– Eliminate the need to use the std:: prefix

– Allow us to write cout instead of std::cout

– To use the following functions without the std:: prefix,

write the following at the top of the program

using std::cout;

using std::cin;

using std::endl;

 2000 Prentice Hall, Inc. All rights reserved.

Outline
26

1. Load <iostream>

2. main

2.1 Initialize num1 and

num2

2.1.1 Input data

2.2 if statements

 1 // Fig. 1.14: fig01_14.cpp

 2 // Using if statements, relational

 3 // operators, and equality operators

 4 #include <iostream>

 5

 6 using std::cout; // program uses cout

 7 using std::cin; // program uses cin

 8 using std::endl; // program uses endl

 9

 10 int main()

 11 {

 12 int num1, num2;

 13

 14 cout << "Enter two integers, and I will tell you\n"

 15 << "the relationships they satisfy: ";

 16 cin >> num1 >> num2; // read two integers

 17

 18 if (num1 == num2)

 19 cout << num1 << " is equal to " << num2 << endl;

 20

 21 if (num1 != num2)

 22 cout << num1 << " is not equal to " << num2 << endl;

 23

 24 if (num1 < num2)

 25 cout << num1 << " is less than " << num2 << endl;

 26

 27 if (num1 > num2)

 28 cout << num1 << " is greater than " << num2 << endl;

 29

 30 if (num1 <= num2)

 31 cout << num1 << " is less than or equal to "

 32 << num2 << endl;

 33

The if statements test the truth

of the condition. If it is true,

body of if statement is

executed. If not, body is

skipped.

To include multiple statements

in a body, delineate them with
braces {}.

Enter two integers, and I will tell you

the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

Notice the using statements.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
27

2.3 exit (return 0)

Program Output

34 if (num1 >= num2)

35 cout << num1 << " is greater than or equal to "

36 << num2 << endl;

37

38 return 0; // indicate that program ended successfully

39 }

Enter two integers, and I will tell you

the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

Enter two integers, and I will tell you

the relationships they satisfy: 22 12

22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Enter two integers, and I will tell you

the relationships they satisfy: 7 7

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

 2000 Prentice Hall, Inc. All rights reserved.

Home work

• Write a program to print your ID, Name and

Level in three different lines using single cout

statement.

• Write a program to calculate the area of a square

• Write a program to calculate the area of a

rectangle

• Write a program to calculate the area of a circle

• Write a program to calculate the area of a triangle.

28

