
 2000 Prentice Hall, Inc.  All rights reserved. 

1 

2.1 Introduction 

• Before writing a program: 

– Have a thorough understanding of problem  

– Carefully plan your approach for solving it 

• While writing a program:  

– Know what “building blocks” are available 

– Use good programming principles 



 2000 Prentice Hall, Inc.  All rights reserved. 

2 

2.2 Algorithms  

• All computing problems 

– can be solved by executing a series of actions in a specific 

order 

• Algorithm 

– A procedure determining the 

• Actions to be executed  

• Order in which these actions are to be executed 

• Program control 

– Specifies the order in which statements are to executed 



 2000 Prentice Hall, Inc.  All rights reserved. 

3 

2.3 Pseudocode  

• Pseudocode 

– Artificial, informal language used to develop algorithms 

– Similar to everyday English 

– Not actually executed on computers  

– Allows us to “think out” a program before writing the code 

for it 

– Easy to convert into a corresponding C++ program 

– Consists only of executable statements 



 2000 Prentice Hall, Inc.  All rights reserved. 

4 

2.4 Control Structures 

• Sequential execution 
– Statements executed one after the other in the order written 

• Transfer of control 
– When the next statement executed is not the next one in 

sequence 

• Bohm and Jacopini: all programs written in terms 
of 3 control structures 
– Sequence structure 

• Built into C++.  Programs executed sequentially by default. 

– Selection structures 

• C++ has three types - if, if/else, and switch  

– Repetition structures 

• C++ has three types - while, do/while, and for 



 2000 Prentice Hall, Inc.  All rights reserved. 

5 

2.4 Control Structures 

• C++ keywords 

– Cannot be used as identifiers or variable names. 

 C++ Keywords     

Keywords common to the 
C and C++ programming 
languages 

    

auto break case char const 

continue default do double else 

enum extern float for goto 

if int long register return 

short signed sizeof static struct 

switch typedef union unsigned void 

volatile while    

C++ only keywords     

asm bool catch class const_cast 

delete dynamic_cast explicit false friend 

inline mutable namespace new operator 

private protected public reinterpret_cast  

static_cast template this throw true 

try typeid typename using virtual 

wchar_t     

 



 2000 Prentice Hall, Inc.  All rights reserved. 

6 

2.4 Control Structures 

• Flowchart 

– Graphical representation of an algorithm 

– Drawn using certain special-purpose symbols connected by 

arrows called flowlines.  

– Rectangle symbol (action symbol) 

• Indicates any type of action. 

– Oval symbol 

• indicates beginning or end of a program, or a section of code 

(circles).  

• single-entry/single-exit control structures  

– Connect exit point of one control structure to entry point of 

the next (control-structure stacking). 

– Makes programs easy to build. 



 2000 Prentice Hall, Inc.  All rights reserved. 

7 

2.5 The if Selection Structure 

• Selection structure 

– used to choose among alternative courses of action 

– Pseudocode example:  

If student’s grade is greater than or equal to 60 

 Print “Passed” 

– If the condition is true 

• print statement executed and program goes on to next 

statement 

– If the condition is false 

• print statement is ignored and the program goes onto the next 

statement 

– Indenting makes programs easier to read 

• C++ ignores whitespace characters 



 2000 Prentice Hall, Inc.  All rights reserved. 

8 

2.5 The if Selection Structure 

• Translation of pseudocode statement into C++: 
 if ( grade >= 60 )  

   cout << "Passed";  

• Diamond symbol (decision symbol) 

– indicates decision is to be made 

– Contains an expression that can be true or false. 

• Test the condition, follow appropriate path 

• if structure is a single-entry/single-exit structure  
  

 



 2000 Prentice Hall, Inc.  All rights reserved. 

9 

2.5 The if Selection Structure 

• Flowchart of pseudocode statement 

true 

 

false 

 

grade >= 60 

 

print “Passed” 

 

A decision can be made on 

any expression.  

zero - false  

nonzero - true 

Example: 

3 - 4 is true 



 2000 Prentice Hall, Inc.  All rights reserved. 

10 

2.6 The if/else Selection Structure 

• if 

– Only performs an action if the condition is true 

• if/else 

– A different action is performed when condition is true and 
when condition is false 

• Psuedocode 
if student’s grade is greater than or equal to 60 

print “Passed” 

else 

 print “Failed”  

• C++ code 
 if ( grade >= 60 )  

   cout << "Passed"; 

else 

   cout << "Failed"; 

  

 
 

 



 2000 Prentice Hall, Inc.  All rights reserved. 

11 

2.6 The if/else Selection Structure 

 

 

 

 

 

• Ternary conditional operator (?:) 

– Takes three arguments (condition, value if true, value if false) 

• Our pseudocode could be written: 
cout << ( grade >= 60 ? “Passed” : “Failed” ); 

 

true 

 

false 

 

print “Failed” 

 

print “Passed” 

 

grade >= 60 

 



 2000 Prentice Hall, Inc.  All rights reserved. 

12 

2.6 The if/else Selection Structure 

• Nested if/else structures 

– Test for multiple cases by placing if/else selection 

structures inside if/else selection structures. 

 if student’s grade is greater than or equal to 90 
   Print “A” 
else  
   if student’s grade is greater than or equal to 80 

    Print “B” 
 else  
      if student’s grade is greater than or equal to 70  
       Print “C” 
    else  

       if student’s grade is greater than or equal to 60  
          Print “D” 
         else 

                Print “F” 

– Once a condition is met, the rest of the statements are skipped 



 2000 Prentice Hall, Inc.  All rights reserved. 

13 

2.6 The if/else Selection Structure 

• Compound statement:  

– Set of statements within a pair of braces 

– Example: 

 if ( grade >= 60 ) 

   cout << "Passed.\n";  

else { 

   cout << "Failed.\n"; 

   cout << "You must take this course 

again.\n"; 

}  

– Without the braces, 

cout << "You must take this course again.\n"; 

  would be automatically executed 

• Block 

– Compound statements with declarations 



 2000 Prentice Hall, Inc.  All rights reserved. 

14 

2.6 The if/else Selection Structure 

• Syntax errors 

– Errors caught by compiler 

• Logic errors 

– Errors which have their effect at execution time 

• Non-fatal logic errors 

– program runs, but has incorrect output 

• Fatal logic errors 

– program exits prematurely 

 



 2000 Prentice Hall, Inc.  All rights reserved. 

15 

1.22      Arithmetic 

• Arithmetic operators: 

 

 

 

 

• Rules of operator precedence: 

 

 

C++ opera tion Arithmetic   
opera tor 

Algebra ic  
expression 

C++ expression 

Addition + f + 7 f + 7 

Subtraction - p – c p - c 

Multiplication * bm b * m  

Division / x / y  x / y 
 

Modulus % r mod s r % s 

 

Operator(s) Operation(s) Order of evaluation (precedence) 

() Parentheses Evaluated first. If the parentheses are nested, the 

expression in the innermost pair is evaluated first.  If 

there are several pairs of parentheses “on the same level” 

(i.e., not nested), they are evaluated left to right. 

*, /, or % Multiplication Division  

Modulus 

Evaluated second. If there are several, they re 

evaluated left to right.  

+ or - Addition 

Subtraction 

Evaluated last. If there are several, they are  

evaluated left to right. 

 



 2000 Prentice Hall, Inc.  All rights reserved. 

16 

Operator precedence 

• How does we evaluate 1 + 3 * 4? 

Is it (1 + 3) * 4, or is it 1 + (3 * 4)? 

– In a complex expression with several operators, Java uses 

internal rules of precedence to decide the order in which to 

apply the operators. 
 

• precedence: Order in which operations are computed in an expression. 

– Multiplicative operators have a higher level of precedence 

than additive operators, so they are evaluated first. 

• * / % before + - 

– In our example, * has higher precedence than +, just like on 

a scientific calculator, so 1 + 3 * 4 is 13. 

– Parentheses can be used to force a certain precedence. 

(1 + 3) * 4 is 16. 



 2000 Prentice Hall, Inc.  All rights reserved. 

17 

Precedence examples 

Step  1. y = 2 * 5 * 5 + 3 * 5 + 7;

Step  2. y = 10 * 5 + 3 * 5 + 7;

Step  3. y = 50 + 3 * 5 + 7;

Step  4. y = 50 + 15 + 7;

Step  5. y = 65 + 7;

Step  6. y = 72;

    2 * 5 is 10

    10 * 5 is 50

         3 * 5 is 15

    50 + 15 is 65

    65 + 7 is 72

(Leftm ost mult ip licat ion)

(Leftm ost mult ip licat ion)

(Mult ip licat ion before ad dition)

(Leftm ost ad dit ion)

(Last a dd it ion)

(Last op era t io n—p la ce 72 in y)



 2000 Prentice Hall, Inc.  All rights reserved. 

18 

Precedence examples 

• 1 * 2 + 3 * 5 / 4 

•  \_/ 
  | 
  2   + 3 * 5 / 4 

•          \_/ 
          | 
  2   +  15   / 4 

•            \___/ 
             | 
  2   +      3 

•    \________/ 
       |  
       5 

 1 + 2 / 3 * 5 - 4 

      \_/ 
      | 
1 +   0   * 5 - 4 

        \___/ 
         | 
1 +      0    - 4 

  \______/ 
    | 
    1         - 4 

      \_________/ 
          |  
          -3 



 2000 Prentice Hall, Inc.  All rights reserved. 

19 

Precedence examples 

• What values result from the following 

expressions? 
– 9 / 5 

– 695 % 20 

– 7 + 6 * 5 

– 7 * 6 + 5 

– 248 % 100 / 5 

– 6 * 3 - 9 / 4 

– (5 - 7) * 4 

– 6 + (18 % (17 - 12)) 

• Which parentheses above are unnecessary (which 

do not change the order of evaluation?) 



 2000 Prentice Hall, Inc.  All rights reserved. 

20 

Real numbers 

• The expressions we have seen so far used integers, 
but C also can manipulate real numbers (numbers 
with a decimal point). 
– Examples: 6.022 -15.9997 42.0

 2.143e17 

• The operators we saw, + - * / % , as well as parentheses ( 
) , all work for real numbers as well. 

– The / operator produces an exact answer when used on real 
numbers, rather than an integer quotient. 

• Example: 15.0 / 2.0 is 7.5 

– The % operator is not often used on real numbers. 

• The same rules of precedence that apply to 
integers also apply to real numbers. 
– ( ) before * / % before + - 



 2000 Prentice Hall, Inc.  All rights reserved. 

21 

Real number example 

• 1.5 * 2.4 + 3.3 * 4.25 / 5.5 

•    \_/ 

    | 

   3.6    + 3.3 * 4.25 / 5.5 

•                \_/ 

                | 

   3.6    +   14.025   / 5.5 

•                     \___/ 

                      | 

   3.6    +          2.55 

•       \_____________/ 

             |  

            6.15 



 2000 Prentice Hall, Inc.  All rights reserved. 

22 

Real number precision 

• Strange things are afoot with real numbers: 
Cout << ((35.0 + 22.4 + 11.9) / 3.0); 

– The mathematically correct answer should be 23.1 

– Instead, we get this: 

 

 

 

• Unfortunately, the computer represents real numbers in an 
imprecise way internally, so some calculations with them 
are off by a very slight amount. 

– We cannot do anything to change this. 

– We will generally ignore this problem for this course and 
tolerate the precision errors, but later on we will learn some 
ways to produce a better output for examples like above. 



 2000 Prentice Hall, Inc.  All rights reserved. 

23 

Mixing integers and reals 

• When a Java operator is used on an integer and a real number, the 
result is a real number. 

– Example: 3 * 4.2 is 12.6 

– Example: 1 + 1.0 is 2.0 

 

• The kind of number that results from a given operator depends only on 
its operands, not any other operands. 

• 7 / 3 * 1.2 + 3 / 2 

•  \_/ 
  | 
  2   * 1.2 + 3 / 2 

•    \___/ 
     | 
    2.4     + 3 / 2 

•                \_/ 
                | 
    2.4     +   1 

•       \________/ 
          |  
         3.4 


