
 2000 Prentice Hall, Inc. All rights reserved.

1

2.7 The while Repetition Structure

• Repetition structure

– Programmer specifies an action to be repeated while some

condition remains true

– Psuedocode

while there are more items on my shopping list

 Purchase next item and cross it off my list

– while loop repeated until condition becomes false.

• Example
int product = 2;

while (product <= 1000)

 product = 2 * product;

 2000 Prentice Hall, Inc. All rights reserved.

2

2.7 The while Repetition Structure

• Flowchart of while loop

product <= 1000

product = 2 * product

true

false

 2000 Prentice Hall, Inc. All rights reserved.

3

2.8 Formulating Algorithms (Counter-

Controlled Repetition)

• Counter-controlled repetition

– Loop repeated until counter reaches a certain value.

• Definite repetition

– Number of repetitions is known

• Example

 A class of ten students took a quiz. The grades (integers in

the range 0 to 100) for this quiz are available to you.

Determine the class average on the quiz.

 2000 Prentice Hall, Inc. All rights reserved.

4

2.8 Formulating Algorithms (Counter-

Controlled Repetition)

• Pseudocode for example:
Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten
 Input the next grade
 Add the grade into the total
 Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

• Following is the C++ code for this example

 2000 Prentice Hall, Inc. All rights reserved.

Outline
5

1. Initialize Variables

2. Execute Loop

3. Output results

 1 // Fig. 2.7: fig02_07.cpp

 2 // Class average program with counter-controlled repetition

 3 #include <iostream>

 4

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8

 9 int main()

 10 {

 11 int total, // sum of grades

 12 gradeCounter, // number of grades entered

 13 grade, // one grade

 14 average; // average of grades

 15

 16 // initialization phase

 17 total = 0; // clear total

 18 gradeCounter = 1; // prepare to loop

 19

 20 // processing phase

 21 while (gradeCounter <= 10) { // loop 10 times

 22 cout << "Enter grade: "; // prompt for input

 23 cin >> grade; // input grade

 24 total = total + grade; // add grade to total

 25 gradeCounter = gradeCounter + 1; // increment counter

 26 }

 27

 28 // termination phase

 29 average = total / 10; // integer division

 30 cout << "Class average is " << average << endl;

 31

 32 return 0; // indicate program ended successfully

 33 }

The counter gets incremented each

time the loop executes. Eventually, the

counter causes the loop to end.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
6

Program Output

Enter grade: 98

Enter grade: 76

Enter grade: 71

Enter grade: 87

Enter grade: 83

Enter grade: 90

Enter grade: 57

Enter grade: 79

Enter grade: 82

Enter grade: 94

Class average is 81

 2000 Prentice Hall, Inc. All rights reserved.

7 2.9 Formulating Algorithms with Top-

Down, Stepwise Refinement (Sentinel-

Controlled Repetition)

• Suppose the problem becomes:

 Develop a class-averaging program that will process an

arbitrary number of grades each time the program is run.

– Unknown number of students - how will the program know

to end?

• Sentinel value

– Indicates “end of data entry”

– Loop ends when sentinel inputted

– Sentinel value chosen so it cannot be confused with a regular

input (such as -1 in this case)

 2000 Prentice Hall, Inc. All rights reserved.

8 2.9 Formulating Algorithms with Top-

Down, Stepwise Refinement (Sentinel-

Controlled Repetition)

• Top-down, stepwise refinement

– begin with a pseudocode representation of the top:

Determine the class average for the quiz

– Divide top into smaller tasks and list them in order:

Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

 2000 Prentice Hall, Inc. All rights reserved.

9

2.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Many programs can be divided into three phases:

– Initialization

• Initializes the program variables

– Processing

• Inputs data values and adjusts program variables accordingly

– Termination

• Calculates and prints the final results.

• Helps the breakup of programs for top-down refinement.

• Refine the initialization phase from
Initialize variables

 to

Initialize total to zero

Initialize counter to zero

 2000 Prentice Hall, Inc. All rights reserved.

10

2.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Refine

Input, sum and count the quiz grades

to

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Input the next grade (possibly the sentinel)

• Refine

Calculate and print the class average

to

If the counter is not equal to zero

 Set the average to the total divided by the counter

 Print the average

Else

 Print “No grades were entered”

 2000 Prentice Hall, Inc. All rights reserved.

Outline
11

1. Initialize Variables

2. Get user input

2.1 Perform Loop

 1 // Fig. 2.9: fig02_09.cpp

 2 // Class average program with sentinel-controlled repetition.

 3 #include <iostream>

 4

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8 using std::ios;

 9

 10 #include <iomanip>

 11

 12 using std::setprecision;

 13 using std::setiosflags;

 14

 15 int main()

 16 {

 17 int total, // sum of grades

 18 gradeCounter, // number of grades entered

 19 grade; // one grade

 20 double average; // number with decimal point for average

 21

 22 // initialization phase

 23 total = 0;

 24 gradeCounter = 0;

 25

 26 // processing phase

 27 cout << "Enter grade, -1 to end: ";

 28 cin >> grade;

 29

 30 while (grade != -1) {

Data type double used to represent

decimal numbers.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
12

3. Calculate Average

3.1 Print Results

Program Output

31 total = total + grade;

 32 gradeCounter = gradeCounter + 1;

 33 cout << "Enter grade, -1 to end: ";

 34 cin >> grade;

 35 }

 36

 37 // termination phase

 38 if (gradeCounter != 0) {

 39 average = static_cast< double >(total) / gradeCounter;

 40 cout << "Class average is " << setprecision(2)

 41 << setiosflags(ios::fixed | ios::showpoint)

 42 << average << endl;

 43 }

 44 else

 45 cout << "No grades were entered" << endl;

 46

 47 return 0; // indicate program ended successfully

 48 }

Enter grade, -1 to end: 75

Enter grade, -1 to end: 94

Enter grade, -1 to end: 97

Enter grade, -1 to end: 88

Enter grade, -1 to end: 70

Enter grade, -1 to end: 64

Enter grade, -1 to end: 83

Enter grade, -1 to end: 89

Enter grade, -1 to end: -1

Class average is 82.50

 2000 Prentice Hall, Inc. All rights reserved.

13

2.10 Nested control structures

• Problem:
 A college has a list of test results (1 = pass, 2 = fail) for 10

students. Write a program that analyzes the results. If more
than 8 students pass, print "Raise Tuition".

• We can see that
– The program must process 10 test results. A counter-

controlled loop will be used.

– Two counters can be used—one to count the number of
students who passed the exam and one to count the number
of students who failed the exam.

– Each test result is a number—either a 1 or a 2. If the number
is not a 1, we assume that it is a 2.

• Top level outline:
Analyze exam results and decide if tuition should be raised

 2000 Prentice Hall, Inc. All rights reserved.

14

2.10 Nested control structures

• First Refinement:
 Initialize variables

 Input the ten quiz grades and count passes and failures

 Print a summary of the exam results and decide if tuition
should be raised

• Refine
Initialize variables

to

Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

 2000 Prentice Hall, Inc. All rights reserved.

15

2.10 Nested control structures

• Refine
Input the ten quiz grades and count passes and failures

 to

While student counter is less than or equal to ten
Input the next exam result

 If the student passed

 Add one to passes
Else
 Add one to failures

 Add one to student counter

• Refine
Print a summary of the exam results and decide if tuition should be raised

 to

Print the number of passes

Print the number of failures

If more than eight students passed
 Print “Raise tuition”

 2000 Prentice Hall, Inc. All rights reserved.

Outline
16

1. Initialize variables

2. Input data and

count passes/failures

 1 // Fig. 2.11: fig02_11.cpp

 2 // Analysis of examination results

 3 #include <iostream>

 4

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8

 9 int main()

10 {

11 // initialize variables in declarations

12 int passes = 0, // number of passes

13 failures = 0, // number of failures

14 studentCounter = 1, // student counter

15 result; // one exam result

16

17 // process 10 students; counter-controlled loop

18 while (studentCounter <= 10) {

19 cout << "Enter result (1=pass,2=fail): ";

20 cin >> result;

21

22 if (result == 1) // if/else nested in while

23 passes = passes + 1;

 2000 Prentice Hall, Inc. All rights reserved.

Outline
17

3. Print results

Program Output

24 else

25 failures = failures + 1;

26

27 studentCounter = studentCounter + 1;

28 }

29

30 // termination phase

31 cout << "Passed " << passes << endl;

32 cout << "Failed " << failures << endl;

33

34 if (passes > 8)

35 cout << "Raise tuition " << endl;

36

37 return 0; // successful termination

38 }

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 2

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Passed 9

Failed 1

Raise tuition

 2000 Prentice Hall, Inc. All rights reserved.

18

2.11 Assignment Operators

• Assignment expression abbreviations
c = c + 3; can be abbreviated as c += 3; using the

addition assignment operator

• Statements of the form
variable = variable operator expression;

can be rewritten as

variable operator= expression;

• Examples of other assignment operators include:
d -= 4 (d = d - 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

 2000 Prentice Hall, Inc. All rights reserved.

19

2.12 Increment and Decrement Operators

• Increment operator (++) - can be used instead of c
+= 1

• Decrement operator (--) - can be used instead of c -
= 1
– Preincrement

• When the operator is used before the variable (++c or –c)

• Variable is changed, then the expression it is in is evaluated.

– Posincrement

• When the operator is used after the variable (c++ or c--)

• Expression the variable is in executes, then the variable is changed.

• If c = 5, then
– cout << ++c; prints out 6 (c is changed before cout is

executed)

– cout << c++; prints out 5 (cout is executed before the
increment. c now has the value of 6)

 2000 Prentice Hall, Inc. All rights reserved.

20

2.12 Increment and Decrement Operators

• When Variable is not in an expression

– Preincrementing and postincrementing have the same effect.

++c;

cout << c;

and

c++;

cout << c;

have the same effect.

 2000 Prentice Hall, Inc. All rights reserved.

21

2.13 Essentials of Counter-Controlled

Repetition

• Counter-controlled repetition requires:
– The name of a control variable (or loop counter).

– The initial value of the control variable.

– The condition that tests for the final value of the control
variable (i.e., whether looping should continue).

– The increment (or decrement) by which the control variable
is modified each time through the loop.

• Example:
 int counter =1; //initialization

 while (counter <= 10){ //repetition

condition

 cout << counter << endl;

 ++counter; //increment

 }

 2000 Prentice Hall, Inc. All rights reserved.

22

2.13 Essentials of Counter-Controlled

Repetition

• The declaration
int counter = 1;

– Names counter

– Declares counter to be an integer

– Reserves space for counter in memory

– Sets counter to an initial value of 1

 2000 Prentice Hall, Inc. All rights reserved.

23

2.14 The for Repetition Structure

• The general format when using for loops is
for (initialization; LoopContinuationTest;

 increment)

 statement

• Example:
for(int counter = 1; counter <= 10; counter++)

cout << counter << endl;

– Prints the integers from one to ten

 No

semicolon

after last

statement

 2000 Prentice Hall, Inc. All rights reserved.

24

2.14 The for Repetition Structure

• For loops can usually be rewritten as while loops:
initialization;

while (loopContinuationTest){

 statement

 increment;

}

• Initialization and increment as comma-separated lists
for (int i = 0, j = 0; j + i <= 10; j++, i++)

 cout << j + i << endl;

 2000 Prentice Hall, Inc. All rights reserved.

25

2.15 Examples Using the for Structure

 1 // Fig. 2.20: fig02_20.cpp

 2 // Summation with for

 3 #include <iostream>

 4

 5 using std::cout;

 6 using std::endl;

 7

 8 int main()

 9 {

 10 int sum = 0;

 11

 12 for (int number = 2; number <= 100; number += 2)

 13 sum += number;

 14

 15 cout << "Sum is " << sum << endl;

 16

 17 return 0;

 18 }

Sum is 2550

• Program to sum the even numbers from 2 to 100

 2000 Prentice Hall, Inc. All rights reserved.

26

2.16 The switch Multiple-Selection Structure

• switch

– Useful when variable or expression is tested for multiple values

– Consists of a series of case labels and an optional default case

true

false

.

.

.

case a

case a action(s)

break

case b

case b action(s)

break

false

false

case z

case z action(s)

break

true

true

default action(s)

 2000 Prentice Hall, Inc. All rights reserved.

Outline
27

1. Initialize variables

2. Input data

2.1 Use switch loop to
update count

 1 // Fig. 2.22: fig02_22.cpp

 2 // Counting letter grades

 3 #include <iostream>

 4

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8

 9 int main()

 10 {

 11 int grade, // one grade

 12 aCount = 0, // number of A's

 13 bCount = 0, // number of B's

 14 cCount = 0, // number of C's

 15 dCount = 0, // number of D's

 16 fCount = 0; // number of F's

 17

 18 cout << "Enter the letter grades." << endl

 19 << "Enter the EOF character to end input." << endl;

 20

 21 while ((grade = cin.get()) != EOF) {

 22

 23 switch (grade) { // switch nested in while

 24

 25 case 'A': // grade was uppercase A

 26 case 'a': // or lowercase a

 27 ++aCount;

 28 break; // necessary to exit switch

 29

 30 case 'B': // grade was uppercase B

 31 case 'b': // or lowercase b

 32 ++bCount;

 33 break;

 34

Notice how the case statement is used

 2000 Prentice Hall, Inc. All rights reserved.

Outline
28

2.1 Use switch loop to
update count

3. Print results

35 case 'C': // grade was uppercase C

 36 case 'c': // or lowercase c

 37 ++cCount;

 38 break;

 39

 40 case 'D': // grade was uppercase D

 41 case 'd': // or lowercase d

 42 ++dCount;

 43 break;

 44

 45 case 'F': // grade was uppercase F

 46 case 'f': // or lowercase f

 47 ++fCount;

 48 break;

 49

 50 case '\n': // ignore newlines,

 51 case '\t': // tabs,

 52 case ' ': // and spaces in input

 53 break;

 54

 55 default: // catch all other characters

 56 cout << "Incorrect letter grade entered."

 57 << " Enter a new grade." << endl;

 58 break; // optional

 59 }

 60 }

 61

 62 cout << "\n\nTotals for each letter grade are:"

 63 << "\nA: " << aCount

 64 << "\nB: " << bCount

 65 << "\nC: " << cCount

 66 << "\nD: " << dCount

 67 << "\nF: " << fCount << endl;

 68

 69 return 0;

 70 }

break causes switch to end and

the program continues with the first
statement after the switch

structure.

Notice the default statement.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
29

Program Output

Enter the letter grades.

Enter the EOF character to end input.

a

B

c

C

A

d

f

C

E

Incorrect letter grade entered. Enter a new grade.

D

A

b

Totals for each letter grade are:

A: 3

B: 2

C: 3

D: 2

F: 1

 2000 Prentice Hall, Inc. All rights reserved.

30

2.17 The do/while Repetition Structure

• The do/while repetition structure is similar to the
while structure,
– Condition for repetition tested after the body of the loop is

executed

• Format:
do {

 statement

} while (condition);

• Example (letting counter = 1):
do {

 cout << counter << " ";

} while (++counter <= 10);

– This prints the integers from 1 to 10

• All actions are performed at least once.

true

false

action(s)

condition

 2000 Prentice Hall, Inc. All rights reserved.

31

2.18 The break and continue Statements

• Break

– Causes immediate exit from a while, for, do/while or

switch structure

– Program execution continues with the first statement after the

structure

– Common uses of the break statement:

• Escape early from a loop

• Skip the remainder of a switch structure

 2000 Prentice Hall, Inc. All rights reserved.

32

2.18 The break and continue Statements

• Continue

– Skips the remaining statements in the body of a while,

for or do/while structure and proceeds with the next

iteration of the loop

– In while and do/while, the loop-continuation test is

evaluated immediately after the continue statement is

executed

– In the for structure, the increment expression is executed,

then the loop-continuation test is evaluated

 2000 Prentice Hall, Inc. All rights reserved.

33

2.19 Logical Operators

• && (logical AND)
– Returns true if both conditions are true

• || (logical OR)
– Returns true if either of its conditions are true

• ! (logical NOT, logical negation)
– Reverses the truth/falsity of its condition

– Returns true when its condition is false

– Is a unary operator, only takes one condition

• Logical operators used as conditions in loops
 Expression Result

 true && false false

true || false true

!false true

 2000 Prentice Hall, Inc. All rights reserved.

34

2.20 Confusing Equality (==) and

Assignment (=) Operators

• These errors are damaging because they do not
ordinarily cause syntax errors.
– Recall that any expression that produces a value can be used in

control structures. Nonzero values are true, and zero values
are false

• Example:
if (payCode == 4)

 cout << "You get a bonus!" << endl;

– Checks the paycode, and if it is 4 then a bonus is awarded

• If == was replaced with =
if (payCode = 4)

 cout << "You get a bonus!" << endl;

– Sets paycode to 4

– 4 is nonzero, so the expression is true and a bonus is awarded,
regardless of paycode.

 2000 Prentice Hall, Inc. All rights reserved.

35

2.20 Confusing Equality (==) and

Assignment (=) Operators

• Lvalues

– Expressions that can appear on the left side of an equation

– Their values can be changed

– Variable names are a common example (as in x = 4;)

• Rvalues

– Expressions that can only appear on the right side of an

equation

– Constants, such as numbers (i.e. you cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

 2000 Prentice Hall, Inc. All rights reserved.

36

2.21 Structured-Programming Summary

• Structured programming

– Programs are easier to understand, test, debug and, modify.

• Rules for structured programming

– Only single-entry/single-exit control structures are used

– Rules:

1) Begin with the “simplest flowchart”.

2) Any rectangle (action) can be replaced by two rectangles

(actions) in sequence.

3) Any rectangle (action) can be replaced by any control

structure (sequence, if, if/else, switch, while, do/while or for).

4) Rules 2 and 3 can be applied in any order and multiple times.

 2000 Prentice Hall, Inc. All rights reserved.

37

2.21 Structured-Programming Summary

Rule 3

Rule 3

Rule 3

Representation of Rule 3 (replacing any rectangle with a control structure)

 2000 Prentice Hall, Inc. All rights reserved.

38

2.21 Structured-Programming Summary

• All programs can be broken down into

– Sequence

– Selection

• if, if/else, or switch

• Any selection can be rewritten as an if statement

– Repetition

• while, do/while or for

• Any repetition structure can be rewritten as a while statement

