
Basics of C++

Revision

C++ program

 Consists of :

 -Compiler Preprocessor directives

 -Constants-Variables

 -Standard functions- other functions which

 are declared

 -main functions

First program

My first program

• // my first program in C++

 This is a comment line. All lines beginning
with two slash signs (//) are considered
comments and do not have any effect on the
behavior of the program.

• #include <iostream>

 Lines beginning with a hash sign (#) are
directives for the preprocessor. They are not
regular code lines with expressions but
indications for the compiler's preprocessor.

• tells the preprocessor to include the

iostream standard file.

• This specific file (iostream) includes the

declarations of the basic standard input-

output library in C++,

• using namespace std;

• All the elements of the standard C++ library

are declared within what is called a

namespace, the

 namespace with the name std.

Header Files

• the preprocessor directive #include tells

the compiler to add the source file

IOSTREAM to the source file before

compiling. Why do this? IOSTREAM is an

example of a header fileIt’s concerned

with basic input/output operations, and

contains declarations that are needed by

the cout identifier and the << operator.

Directives

• The two lines that begin the FIRST

program are directives. The first is a
preprocessor directive,

 and the second is a using directive.

• They’re not part of the basic C++

language, but they’re necessary

anyway

• They are instructions to the compiler

• Include Directives add library files to our
programs

– To make the definitions of the cin and cout
available to the program:

 #include <iostream>

• Using Directives include a collection of defined
names

– To make the names cin and cout available to
our program:

 using namespace std;

main ()

• This line defines a function called main

• This line corresponds to the beginning of the

definition of the main function. The main

function is the point by where all C++

programs start their execution the

instructions contained within this function's

definition will always be the first ones to be

executed in any C++ program. For that same

reason, it is essential that all C++ programs

have a main function

Always Start with main()

• The word main is followed in the code by a
pair of parentheses (()).

• That is because it is a function declaration:
In C++, what differentiates a function
declaration from other types of
expressions are these parentheses that
follow its name. Optionally, these
parentheses may enclose a list of
parameters within them.

cout

• Right after these parentheses we can

find the body of the main function

enclosed in braces ({}). What is

contained within these braces is what

the function does when it is executed.

• cout << "Hello World!";

 cout represents the standard output
stream in C++

<< output operator

• A string is any sequence of characters

enclosed in double-quotes.

• Cout is the standard output stream in

C++

 (standard output usually means your

computer monitor screen). The symbol

 << is an output operator

return

• Notice that the statement ends with a
semicolon character (;). This character
is used to mark the end of the
statement and in fact it must be
included at the end of all expression
statements in all C++ programs

• return 0;

 The return statement causes the main
function to finish

just one line

• We could have written:

All in just one line and this would have had exactly

the same meaning as the previous code.

Code in many lines

• We were also free to divide the code into

more lines if we considered it more

convenient:

Comments

• C++ supports two ways to insert

comments:

The second one, known as block

comment, discards everything between

the /*characters and the first appearance

of the */ characters, with the possibility of

including more than one line.

We are going to add comments to our

second program:

block comment

Data types in C++

Variables

• Variables are like small blackboards

– We can write a number on them

– We can change the number

• C++ variables are names for memory

locations

– We cannot erase the memory location

Variables

• we can define a variable as a portion of

memory to store a determined value.

Each variable needs an identifier that

distinguishes it from the others, for example, in

the previous code the variable identifiers were

a, b and result

Identifiers

• A valid identifier is a sequence of one or

more letters, digits or underscore

characters (_). Neither spaces nor

 punctuation marks or symbols can be part

of an identifier. Another rule that you have

to consider when inventing your own

identifiers is that they cannot match any

reserved keywords

Identifiers

– First character must be
• a letter

• the underscore character

– Remaining characters must be
• letters

• numbers

• underscore character

Identifiers

• an identifier written in capital letters is not

equivalent to another one with the same

name but written in small letters.

• Identifiers refer to the names of variables,

functions, arrays, classes , etc. created by

the programmer.

Declaration of variables

• In order to use a variable in C++, we must

first declare it specifying which data type

we want it to be. The syntax to declare a

new variable is to write the specifier of the

desired data type (like int, bool, float...)

followed by a valid variable identifier.

• Examples: int number_of_students;

 double student_weight;

Declaration of variables

– int is an abbreviation for integer.

– double represents numbers with a fractional
component

• Before use, variables must be declared

– Tells the compiler the type of data to store

• Declaration syntax:

– Type_name Variable_1 , Variable_2, . . . ;

–

If you are going to declare more than one variable of

the same type, you can declare all of them in a single

statement by separating their identifiers with commas.

For example:

Declaration of variables

Variable of type int in memory

an int occupies 4 bytes (which is 32 bits) of memory

Assignment Statements

• The statements

• var1 = 5;

• var2 = 2;

• assign values to the two variables. The

equal sign (=), as you might guess, causes

the value on the right to be assigned to the

variable on the left.

Scope of variables

Global and Local variables

• A variable can be either of global or local

scope. A global variable is a variable

declared in the main body of the source

code, outside all functions, while a local

variable is one declared within the body of

a function or a block.

• A global variable (External variable) is

visible to all functions so you put their

decleration at the beginning of listing.

Initialization of variables

• This is done by appending an equal sign

followed by the value to which the variable

will be initialized:

• type identifier = initial_value ;

• For example, if we want to declare an int

variable called a initialized with a value of

0 at the moment in which it is declared, we

could write: int a = 0;

constructor initialization

• The other way to initialize variables,

known as constructor initialization, is done

by enclosing the initial value between

parentheses (()):

• type identifier (initial_value) ;

 For example: int a (0);

• When you declare a variable, you create a

named storage location.

• When you make an assignment to a

variable, you give it a value.

• you cannot store a string in an int variable.

The following statement generates a

compiler error.

• int hour;

 hour = "Hello."; // WRONG !!

Character Variables

• Type char stores integers that range in

value from –128 to 127. Variables of this

type occupy only 1 byte (eight bits) of

memory. Character variables are

sometimes used to store numbers that

confine themselves to this limited range,

but they are much more commonly used to

store ASCII characters.

Character Constants

• Character constants use single quotation

marks around a character, like ‘a’ and ‘b’.

• When the C++ compiler encounters such a

character constant, it translates it into the

corresponding ASCII code. The constant

‘a’ appearing in a program, for example,

will be translated into 97,

Character Constants

Variable of type char in memory

Introduction to strings

• Variables that can store non-numerical

values that are longer than one single

character are known as strings.

Strings

• strings can be initialized with any valid

string literal just like numerical type

variables can be initialized to any valid

numerical literal. Both initialization formats

are valid with strings

Input and Output

• A data stream is a sequence of data
– Typically in the form of characters or numbers

• An input stream is data for the program to use

– Typically originates

• at the keyboard

• at a file

• An output stream is the program’s output

– Destination is typically

• the monitor

• a file

Output using cout

• cout is an output stream sending data to the

monitor

• The insertion operator "<<" inserts data into cout

• Example:

 cout << number_of_bars << " candy

bars\n";

– This line sends two items to the monitor

• The value of number_of_bars

• The quoted string of characters " candy bars\n"

Output Variations

• The statement

• cout << “var1+10 is “;

• displays a string constant, as we’ve seen

before.

• The next statement

• cout << var2 << endl;

• displays the value of the variable var2.

Input with cin

• how a program accomplishes input. The

next example program asks the user for a

temperature in degrees Fahrenheit,

converts it to Celsius, and displays the

result. It uses integer variables.

• The statement

• cin >> ftemp;

• causes the program to wait for the user to

type in a number.

// program to calculate temp in Celsius

 // program to calculate area of circle

 #include <iostream> //for cout, etc.

 using namespace std;

 int main()

 {

 float rad; //variable of type float

 const float PI = 3.14159F; //type const float

 cout << “Enter radius of circle: “; //prompt

 cin >> rad; //get radius

 float area = PI * rad * rad; //find area

 cout << “Area is “ << area << endl; //display answer

 return 0;

 }

>> is the extraction or get from operator

• The keyword cin is an object, predefined in

C++ to correspond to the standard input

stream. This stream represents data

coming from the keyboard.

Cascading <<

• The insertion operator << is used

repeatedly in the second cout statement in

FAHREN.

• The program first sends the phrase

Equivalent in Celsius is: to cout, then it

 sends the value of ctemp, and finally the

newline character ‘\n’.

++ Increment Operators

• count = count + 1; // adds 1 to “count”

• Or you can use an arithmetic assignment

operator:

• count += 1; // adds 1 to “count”

• But there’s an even more condensed

approach:

• ++count; // adds 1 to “count”

• The ++ operator increments (adds 1 to) its

argument.

The Decrement (--) Operator

• The decrement operator, --, behaves very

much like the increment operator, except

that it subtracts 1 from its operand.

Prefix and Postfix

• the increment operator can be used in two

ways: as a prefix, meaning that the

operator precedes the variable; and as a

postfix, meaning that the operator follows

• the variable.

• totalWeight = avgWeight * ++count;

• In this case count is incremented first.

• Because prefix notation is used:++count.

• If we had used postfix notation, count++,

the multiplication would have been

performed first, then count would have

been incremented.

Library Functions

• Many activities in C++ are carried out by

library functions. These functions perform
file access, mathematical computations,

and data conversion, among other things.

