
Why Do We Need Object-Oriented

Programming?

Procedural Languages

• C, Pascal, FORTRAN, and similar languages are

procedural languages.

• A program in a procedural language is a list of

instructions. and the computer carries them out.

• Few programmers can understand a program of

more than a few hundred statements unless it is

broken down into smaller units

Division into Functions

• the function was adopted as a way to make

programs more comprehensible to their

human creators. In other languages the

same concept may be referred

• to as a subroutine, a subprogram, or a

procedure.) A procedural program is

divided into functions, and (ideally, at least)

each function has a clearly defined purpose

Problems with Structured Programming

• As programs grow ever larger and more

complex, even the structured programming

approach begins to show signs of strain.

• What are the reasons for these problems?

There are two related problems.

– First, functions have unrestricted access to

global data.

– Second, unrelated functions and data,

Unrestricted Access

• In a large program, there are many

functions and many global data items.

The problem with the procedural paradigm

is that this leads to an even larger number

of potential connections between

functions and data,

• it makes the program difficult to modify. A

change made in a global data item may

necessitate rewriting all the functions that

access that item.

• someone may decide that the product codes for the

inventory items should be changed from 5 digits

to 12 digits. This may necessitate a change

from a short to a long data type.

• Now all the functions that operate on the data

must be modified

• When data items are modified in a large

program it may not be easy to tell which

functions access the data, and even when

you figure this out, modifications to the

functions may cause them to work

incorrectly with other global data items.

The Object-Oriented Approach

• The fundamental idea behind object-

oriented languages is to combine into a

single unit both data and the functions
that operate on that data.

• Such a unit is called an object. An

object’s functions, called member
functions in C++, typically provide the

only way to access its data.

A C++ program typically consists of a number of objects, which

communicate with each other by calling one another’s member

functions

• Data and its functions are said to be

encapsulated into a single entity.

• Data encapsulation and data hiding are

key terms in the description of object-

oriented languages.

Classes

• In OOP we say that objects are members

of classes

• class serves as a plan, or blueprint. It

specifies what data and what functions

will be included in objects of that class.

• A class is thus a description of a number

of similar objects.

