C++ Structure

What Is a Structure?

o A structure Is a collection of variables
under a single name. Variables can be of
any type: int, float, char etc.

 The main difference between structure
and array Is that arrays are collections of
the same data typestructure Is a
collection of variables under a single
name. and The data items In a structure
are called the members of the structure.

The program PARTS defines the structure part, defines a structure variable of that type called
parti, assigns values to its members, and then displays these values.

[/ parts.cpp
f/ uses parts inventory to demonstrate structures
#ginclude <iostream=

using namespace std,

struct part //declare a structure
{
int modelnumber; //ID number of widget
int partnumber; //ID number of widget part
float cost; //cost of part

int main()

{
part parti; //define a structure variable

parti.modelnumber = 6244; //give values to structure members
parti.partnumber = 373;
parti.cost = 217.55 ;

//display structure members
cout << "Model * << parti.modelnumber;
cout << ", part " << parti.partnumber;
cout << ", costs $§" << parti.cost << endl;
return 0;

}

The program’s output looks like this:

Model 6244, part 373, costs $217.55

Declaring a Structure

* The structure Is declared by using the

keyword struct followed by structure name,
also called a tag. Then the structure
members (variables) are defined with their
type and variable names inside the open and
close braces "{"and "}".

* Finally, the closed braces end with a
semicolon denoted as ";" following the
statement. The above structure declaration
IS also called a Structure Specifier.

A Simple Structure

- Let’s start off with a structure that
contains three variables: two integers
and a floating-point number.

- This structure represents an item in
company’s parts inventory.

- The program PARTS defines the
structure part, defines a structure variable
of that type called partl, assigns values
to its members, and then displays these
values.

/[uses parts inventory to demonstrate structures
#include <iostream>
using namespace std,;

struct part //declare a structure
{
INt modelnumber;
//ID number of widget(structure member)
Int parthumber;
[/[ID number of part(structure member)
float cost;
//cost of part(structure member)

Int main()

{
part partl;

//define a structure variable
partl.modelnumber = 6244,

//give values (assign) to structure members
partl.partnumber = 373,

partl.cost = 217.55;

//display structure members

cout << "Model * << partl.modelnumber;
cout << “, part “ << partl.partnumber;
cout << “, costs $” << partl.cost << endl;

return O;

}

The program’s output looks like this:
Model 6244, part 373, costs $217.55

The PARTS program has three main
aspects

1-defining the structure,
2-defining a structure variable,
3-accessing the members of the structure.

Let’s look at each of these.

Defining the Structure

The structure definition tells how the structure Is
organized: It specifies what members the

structure will have. Here it is:
struct part

{

Int modelnumber;

Int partnumber;

float cost;

* 5

Syntax of the structure definition.

Keyword “struct”

Structure name or “tag”

struct part

— 1
int modelnumber;
Braces delimit :]
structure members | int partnumber; Structure members
float cost;
b

Semicolon terminates definition

Defining a Structure Variable

* The first statement in main()
part partl;

 defines a variable, called part1, of type
structure part.

* This definition reserves space in memory
for partl. In some ways we can think of
the part structure as the specification for
a new data type.

* part partl;
* INt varl;

Structure members /in memory.

part parti;

Accessing Structure Members

members can be accessed using some
thing called the dor operator. Here's how
the first member Is given a value.

o partl.modelnumber = 6244;

The structure member is written in three
parts: the name of the structure variable
(partl); the dot operator, which consists

of a period (.); and the member name
(modelnumber).

Initializing Structure Members

* The next example shows how structure
members can be initialized when the
structure variableis defined.

* |t also demonstrates that you can have
more than one variable of a given
structure type

Initializing Structure Members

// shows Initialization of structure variables
#include <iostream>

using namespace std,;

Struct part //specify a structure

{

Int modelnumber; //ID number of widget
Int partnumber; //ID number of widget part
float cost; //cost of part

¥

Int main()

{/mnitialize variable

part partl = {6244, 373, 217.55F };

part part2; //define variable

//display first variable

cout << “Model “ << partl.modelnumber;

cout << “, part “ << partl.partnumber;

cout << “, costs $” << partl.cost << endl;
part2 = partl,; //assign first variable to second

//display second variable

cout << "Model * << part2.modelnumber;
cout << “, part “ << part2.partnumber;
cout << “, costs $” << part2.cost << end!;
return O;

}

* The partl structure variable’s members
are initialized when the variable is defined:

« part partl = {6244, 373, 217.55 },
* Here's the output:
Model 6244, part 373, costs $217.55

Model 6244, part 373, costs $217.55

Example:

Three variables: custnum of type int,

salary of type int, commission of type
float are structure members and the
structure name Is Customer.

This structure is declared as follows:

For example:

* A programmer wants to assign 2000 for
the structure member salary in the above
example of structure Customer with
structure variable custl1 this is written as:

custl.salary=2000;

2N

Structure
variable name Lot Operator

IMMember name

For Example

#include <iostream>
using namespace std;

struct Customer

{

Int custnum:;
Int salary;

float commission:;

Example continued

void main()

/linitialize variable
Customer cust1={100,2000,35.5};
Customer cust2;
cust2=custl;

cout << "n Customer Number: "<< custl.custnum <<"; Salary:
Rs."<< custl.salary <<"; Commission: Rs." << custl.commission;

cout << "n Customer Number: "<< cust2.custnum <<"; Salary:
Rs."<< cust2.salary << "; Commission: Rs." << cust2.commission;

}

