
C++ Structure

What is a Structure?

• A structure is a collection of variables

under a single name. Variables can be of

any type: int, float, char etc.

• The main difference between structure

and array is that arrays are collections of

the same data typestructure is a

collection of variables under a single

name. and The data items in a structure

are called the members of the structure.

Declaring a Structure

• The structure is declared by using the

keyword struct followed by structure name,
also called a tag. Then the structure
members (variables) are defined with their
type and variable names inside the open and
close braces "{"and "}".

• Finally, the closed braces end with a
semicolon denoted as ";" following the
statement. The above structure declaration
is also called a Structure Specifier.

A Simple Structure

 - Let’s start off with a structure that

contains three variables: two integers

and a floating-point number.

 - This structure represents an item in

company’s parts inventory.

 - The program PARTS defines the

structure part, defines a structure variable

of that type called part1, assigns values

to its members, and then displays these

values.

 // uses parts inventory to demonstrate structures

 #include <iostream>

 using namespace std;

struct part //declare a structure

 {

 int modelnumber;

 //ID number of widget(structure member)

 int partnumber;

 //ID number of part(structure member)

 float cost;

 //cost of part(structure member)

};

int main()

 {

 part part1;

 //define a structure variable

 part1.modelnumber = 6244;

 //give values (assign) to structure members

 part1.partnumber = 373;

 part1.cost = 217.55;

 //display structure members

 cout << “Model “ << part1.modelnumber;

 cout << “, part “ << part1.partnumber;

 cout << “, costs $” << part1.cost << endl;

 return 0;

 }

 The program’s output looks like this:

 Model 6244, part 373, costs $217.55

The PARTS program has three main

aspects

 1-defining the structure,

 2-defining a structure variable,

 3-accessing the members of the structure.

Let’s look at each of these.

Defining the Structure

The structure definition tells how the structure is

organized: It specifies what members the

 structure will have. Here it is:

 struct part

 {

 int modelnumber;

 int partnumber;

 float cost;

• };

Syntax of the structure definition.

Defining a Structure Variable

• The first statement in main()

 part part1;

• defines a variable, called part1, of type

structure part.

• This definition reserves space in memory

for part1. In some ways we can think of

the part structure as the specification for

a new data type.

• part part1;

• int var1;

Structure members in memory.

Accessing Structure Members

 members can be accessed using some

thing called the dot operator. Here’s how
the first member is given a value:

• part1.modelnumber = 6244;

 The structure member is written in three

parts: the name of the structure variable

(part1); the dot operator, which consists

of a period (.); and the member name

(modelnumber).

Initializing Structure Members

• The next example shows how structure

members can be initialized when the

structure variableis defined.

• It also demonstrates that you can have

more than one variable of a given

structure type

Initializing Structure Members

• // shows initialization of structure variables

• #include <iostream>

• using namespace std;

• Struct part //specify a structure

• {

• int modelnumber; //ID number of widget

• int partnumber; //ID number of widget part

• float cost; //cost of part

• };

• int main()

• { //initialize variable
• part part1 = { 6244, 373, 217.55F };

• part part2; //define variable

• //display first variable

• cout << “Model “ << part1.modelnumber;

• cout << “, part “ << part1.partnumber;

• cout << “, costs $” << part1.cost << endl;

• part2 = part1; //assign first variable to second

• //display second variable

• cout << “Model “ << part2.modelnumber;

• cout << “, part “ << part2.partnumber;

• cout << “, costs $” << part2.cost << endl;

• return 0;

• }

• The part1 structure variable’s members

are initialized when the variable is defined:

• part part1 = { 6244, 373, 217.55 };

• Here’s the output:

 Model 6244, part 373, costs $217.55

 Model 6244, part 373, costs $217.55

Example:

• Three variables: custnum of type int,

salary of type int, commission of type

float are structure members and the

structure name is Customer.

• This structure is declared as follows:

For example:

• A programmer wants to assign 2000 for

the structure member salary in the above

example of structure Customer with

structure variable cust1 this is written as:

For Example

• #include <iostream>

• using namespace std;

• struct Customer

• {

• int custnum;

• int salary;

• float commission;

• };

•

Example continued

• void main()

• {
 //initialize variable

• Customer cust1={100,2000,35.5};

• Customer cust2;

• cust2=cust1;

• cout << "n Customer Number: "<< cust1.custnum << "; Salary:
Rs."<< cust1.salary << "; Commission: Rs." << cust1.commission;

• cout << "n Customer Number: "<< cust2.custnum << "; Salary:
Rs."<< cust2.salary << "; Commission: Rs." << cust2.commission;

• }

