
C++ Objects

and

classes

Class and object

• A class is an expanded concept of a data

structure: instead of holding only data, it

can hold both data and functions.

• An object is an instant of a class. In terms

of variables, a class would be the type,

and an object would be the variable

A Simple Class

• // smallobj.cpp

 // demonstrates a small, simple object

 #include <iostream>

 using namespace std;

 class smallobj //define a class

 {

 private:

 int somedata; //class data

 public:

 void setdata(int d) //member function to set data

 { somedata = d; }

 void showdata() //member function to display data

 { cout << “Data is “ << somedata << endl; }

 };

 int main()

 {

 smallobj s1, s2; //define two objects of class smallobj

 s1.setdata(1066); //call member function to set data

 s2.setdata(1776);

 s1.showdata(); //call member function to display data

 s2.showdata();

 return 0;

 }

• In SMALLOBJ, the class—whose name is

smallobj—is defined in the first part of the

program. Later, in main(), we define two

objects—s1 and s2—that are instances of that

class. Here’s the output of the

• program:

• Data is 1066 ← object s1 displayed this

• Data is 1776 ← object s2 displayed this

Classes contain data and functions.

• Placing data and functions together into

single entity is the central idea of OOP.

Defining the Class

 class smallobj //define a class

 {

 private:

 int somedata; //class data (data member)

 public:

 void setdata(int d) //member function to set data

 { somedata = d; }

 void showdata() //member function to display data

 { cout << “\nData is “ << somedata; }

 };

Syntax of a class specifier

Class Data and Member Functions

 Class Data:

• The smallobj class contains one data item: somedata,

which is of type int. The data items within a class are

called data members.

 Member Functions:

• There are two member functions in smallobj: setdata()

and showdata().

 void setdata(int d)

 {

 somedata = d;

• }

Defining Objects

• The first statement in main()

• smallobj s1, s2;

• defines two objects, s1 and s2, of class

smallobj

• Defining an object is similar to defining a

variable of any data type: Space is set

aside for it in memory. Objects are

sometimes called instance variables.

Calling Member Functions

• The next two statements in main() call the

member function setdata():

 s1.setdata(1066);

 s2.setdata(1776);

• The syntax is used to call a member function

that is associated with a specific object

• To use a member function, the dot operator (the

period) connects the object name and the

member function.

Functions Are Public, Data Is Private

• Usually the data within a class is private and the

functions are public. This is a result of the

 way classes are used. The data is hidden so it

will be safe from accidental manipulation, while

 the functions that operate on the data are public

so they can be accessed from outside the class.

• However, there is no rule that says data must

be private and functions public;

example1

• // objpart.cpp

• // widget part as an object

• #include <iostream>

• using namespace std;

• class part //define class

 {

 private:

 int modelnumber; //ID number of widget

 int partnumber; //ID number of widget part

 float cost; //cost of part

 public:

 void setpart(int mn, int pn, float c) //set data

 {

 modelnumber = mn;

 partnumber = pn;

 cost = c;

 }

 void showpart() //display data

 {

 cout << “Model “ << modelnumber;

 cout << “, part “ << partnumber;

 cout << “, costs $” << cost << endl;

 }

 };

• int main()

 {

 Part part1; //define object

 // of class part

 part1.setpart(6244, 373, 217.55F);

 //call member function

 part1.showpart(); //call member function

 return 0;

 }

• In this example only one object of type part is

created: part1.

• The member function setpart() sets the three

data items in this part to the values 6244, 373,

and 217.55.

• The member function showpart() then displays

these values. Here’s the output:

• Model 6244, part 373, costs $217.55

THE OBJECT-ORIENTED PARADIGM

object

Data

Member
Function

Member
Function

Data

Member
Function

Member
Function

Data

Member
Function

Member
Function

object
object

CLASSES

• Objects belong to classes

• A class and an object of that class has the
same relationship as a data type and a
variable

• All objects with the same characteristics
(data and functions) constitute one class.

• A class serves only as a plan, or a
template, or sketch- of a number of similar
things

• .

• It merely specifies what data and what

functions will be included in objects of that

class

• Declaring a class doesn’t create any

objects.

• A class is thus a description of a no. of

similar objects.

• For instance, HUMAN is a class, and

JOHN is its instance (object)

Constructors and destructors

• It is possible to define and at the same

time initialize objects of a class.

• A constructor is a member function

that is executed automatically whenever

an object is created..

• So an object can initialize itself when

it’s first created, without requiring a

separate call to a member function.

Constructors and destructors

• This constructor function must have the

same name as the class, and

cannot have any return type;

 // counter.cpp

 // object represents a counter variable

 #include <iostream>

 using namespace std;

 class Counter

 {

 private:

 unsigned int count; //count

 public:

 Counter() : count(0) //constructor

 { /*empty body*/ }

 Void inc_count() //increment count

 { count++; }

 Int get_count() //return count

 { return count; }

 };

 int main()

 {

 Counter c1, c2; //define and initialize

 cout << “\nc1=” << c1.get_count(); //display 0

 cout << “\nc2=” << c2.get_count();

• c1.inc_count(); //increment c1

• c2.inc_count(); //increment c2

• c2.inc_count(); //increment c2

• cout << “\nc1=” << c1.get_count(); //display 1

• cout << “\nc2=” << c2.get_count();

• cout << endl;

• return 0;

• }

• The Counter class has one data member:

count, of type unsigned int (since the

count is always positive). It has three

member functions:

– the constructor Counter(),

– inc_count(), which adds 1 to count;

– and get_count(), which returns the current

value of count.

• Thus in main() the statement

• Counter c1, c2;

• creates two objects of type Counter. As

each is created, its constructor, Counter(),

is executed.This function sets the count

variable to 0. So the effect of this single

statement is to not only create two objects,

but also to initialize their count variables to

0.

Same Name as the Class

• constructor functions.

• First, it is no accident that they have

exactly the same name (Counter in this

example) as the class of which they are

members

• Second, no return type is used for

constructors

• Here’s how you should initialize a data

member:

 counter() : count(0)

 { }

• we can rewrite the constructor to print a

message when it executes.

 Counter() : count(0)

 { cout << “I’m the constructor\n”; }

Initializing multiple members

• If multiple members must be initialized,

they’re separated by commas. The result

is the initializer list (sometimes called by

other names, such as the member-
initialization list).

 Some Class() : m1(7), m2(33), m2(4)

 { }

Counter Output

• the Counter class creates two counters,

c1 and c2.

• It causes the counters to display their

initial values, which—as arranged by the

constructor—are 0. It then increments c1

once and c2 twice, and again causes the

counters to display themselves

Destructors

• Just as a constructor is used to initialize

an object when it is created, a destructor

is used to clean up the object just

before it is destroyed.

• A destructor always has the same name

as the class itself, but is preceded with a

~ symbol. Unlike constructors,

• a class may have at most one destructor.

• A destructor never takes any arguments

 and has no explicit return type.

Destructors
• class Foo

• {

• private:

• int data;

• public:

• Foo() : data(0) //constructor (same name

as class)

• { }

• ~Foo() //destructor (same name with tilde)

• { }

• Like constructors, destructors do not

have a return value. They also take no

arguments (the assumption being that

there’s only one way to destroy an

object).};

