Addresses and Pointers

* Every byte in the computer’s memory has an
address.

* program, when it is loaded into memory,
occupies a certain range of these addresses.

 That means that every variable and every
function in your program starts at a particular

address.

The Address-of Operator &

* You can find the address occupied by a variable by
using the address-of operator &.

// varaddr.cpp

// addresses of variables

#include <iostream>

using namespace std;

int main()

{

int varl = 11; //define and initialize
int var2 = 22; //three variables

int var3 = 33;

cout << &varl << endl //print the addresses
<< &var2 << endl //of these variables
<< &var3 << endl;

return O;

}

* This simple program defines three integer

variables and initializes them to the values
11, 22, and 33.

* |t then prints out the addresses of these
variables.

Here’s the output on our machine:
Ox8f4ffff4 € address of varl
Ox8f4ffff2 € address of var2
Ox8f4ffff0 € address of var3

* The << insertion operator interprets the
addresses in hexadecimal arithmetic, as
indicated by the prefix Ox before each
number. This is the usual way to show
memory addresses.

* The addresses appear in descending order
because local variables are stored on the

stack, which grows downward in memory.

 If we had used global variables, they
would have ascending addresses, since

global variables are stored on the heap,

Pointer Variables

e A variable that holds an address value is

called a pointer variable, or simply a pointer.

* [/ ptrvar.cpp
[/ pointers (address variables)

* #include <iostream>

e using namespace std;

* int main()

* {

* intvarl =11; //two integer variables
* intvar2=22;

cout << &varl << endl //print addresses of variables
<< &var2 << endl << endl;

int® ptr; //pointer to integers
ptr = &varl; //pointer points to varl

cout << ptr<<endl; //print pointer value
ptr = &var2; //pointer points to var2
cout << ptr << endl; //print pointer value
return O;

}

The program defines a pointer variable in the line
int* ptr;

The asterisk means pointer to. Thus the statement
defines the variable PTr as a pointer to int.

char* cptr; // pointer to char
int* iptr; // pointer to int
float* fptr; // pointer to float

Distance* distptr; // pointer to user-defined class
Distance

Here’s

the output of PTRVAR:

Ox8f51fff4 < address of varl
Ox8f51fff2 < address of var2
Ox8f51fff4 & ptr set to address of varl
Ox8f51fff2 € ptr set to address of var2

Accessing the Variable Pointed To

e Suppose that we don’t know the name of a
variable but we do know its address.

* There is a special syntax to access the value
of a variable using its address instead of its
name.

* Here’s an example program, PTRACC, that
shows how it’s done:

Accessing the Variable Pointed To

// ptracc.cpp
// accessing the variable pointed to

#tinclude <iostream>

using namespace std;

int main()

{

int varl = 11; //two integer variables
int var2 = 22;

int* ptr; //pointer to integers

ptr = &varl; //pointer points to varl

cout << *ptr << endl; //print contents of pointer
(11)

ptr = &var2; //pointer points to var2

cout << *ptr << endl; //print contents of pointer (22)
return O;

}

* This program is very similar to PTRVAR,
except that instead of printing the address
values in ptr, we print the integer value
stored at the address that’s stored in ptr.
Here’s the output:

11
° 22

 When an asterisk is used in front of a variable
name, as it is in the *ptr expression, it is

called the dereference operator (or
sometimes the indirection operator). It

means the value of the variable pointed
to by.

a pointer to assign a value to a variable,

#include <iostream>

using namespace std;

int main()

{

int varl, var2; //two integer variables

int* ptr; //pointer to integers

ptr = &varl; //set pointer to address of varl

*ptr = 37; //same as var1l=37
var2 = *ptr; //same as var2=varl

cout << var2 << endl; //verify var2 is 37
return O;

}

summary

Here’s a capsule summary of what we’ve
learned so far:

int v; //defines variable v of type int

int* p; //defines p as a pointer to int

p = &V; //assigns address of variable v to
pointer P
v =3; //assigns 3to v

*p = 3; //also assigns 3 to v

Pointers and Arrays

* Thereis a close association between
pointers and arrays.

* We saw how array elements are accessed.

* The following program, ARRNOTE, provides a
review.

Pointers and Arrays

// arrnote.cpp

// array accessed with array notation
#include <iostream>

using namespace std;

int main()

{//array
intintarray[5] ={31,54,77,52,93};
for(int j=0; j<5; j++) //for each element,

cout << intarray|j] << endl; //print value

return O;

}

array elements can be accessed using pointer notation

* [/ ptrnote.cpp
« [/ array accessed with pointer notation

* #include <iostream>

* using namespace std;

* int main()

o {//array
 intintarray[5]={31,54,77,52,93};

* for(int j=0; j<5; j++) //for each element,

* cout << *(intarray+j) << endl; //print value

* returnO;

*]

* The expression *(intarray+j) in PTRNOTE
has exactly the same effect as intarray[j] in

ARRNOTE, and the output of the programs is
identical
* In next example Here we define a pointer to

int—ptrint—and give it the value intarray,
the address of the array.

* Now we can access the contents of the array
elements with the expression™(ptrint++)

// ptrinc.cpp
// array accessed with pointer

#include <iostream>
using namespace std;
int main()

{
int intarray[] = {31, 54, 77, 52, 93 }; //array

int™ ptrint; //pointer to int
ptrint = intarray; //points to intarray
for(int j=0; j<5; j++) //for each element,

cout << *(ptrint++) << endl; //print value

return O;

}

* The expression *(ptrint++) then represents

the contents of the second array
element, or 54.
* The loop causes the expression to access

each array element in turn. The output of
PTRINC is the same as that for PTRNOTE

