
Friendship

Friendship

• In principle, private and protected members
of a class cannot be accessed from outside the
same class in which they are declared.
However, this rule does not affect friends.

• If we want to declare an external function as
friend of a class, thus allowing this function
to have access to the private and protected
members of this class, we do it by declaring a
prototype of this external function within the

 class, and preceding it with the keyword
friend:

• class CRectangle {

• int width, height;

• public:

• void set_values (int, int);

• int area () {return (width * height);}

• friend CRectangle duplicate (CRectangle);

• };

• void CRectangle::set_values (int a, int b) {

• width = a;

• height = b;

• }

• CRectangle duplicate (CRectangle rectparam)

• {

• CRectangle rectres;

• rectres.width = rectparam.width*2;

• rectres.height = rectparam.height*2;

• return (rectres); }

• int main () {

• CRectangle rect, rectb;

• rect.set_values (2,3);

• rectb = duplicate (rect);

• cout << rectb.area();

• return 0;

• }

• The duplicate function is a friend of
CRectangle. From within that function we
have been able to access the

• members width and height of different
objects of type CRectangle, which are private
members.

• Notice that neither in the declaration of
duplicate() nor in its later use in main() have
we considered duplicate a member

of class CRectangle. It isn't! It simply has
access to its private and protected members
without being a member.

• The duplicate function is a friend of
CRectangle. From within that function we
have been able to access the members width
and height of different objects of type
CRectangle, which are private members.

Friend classes

• Just as we have the possibility to define a
friend function, we can also define a class as
friend of another one, granting that first class
access to the protected and private members
of the second one.

• class CSquare;

• class CRectangle {

• int width, height;

• public:

• int area ()

• {return (width * height);}

• void convert (CSquare a);

• };

• class CSquare {

• private:

• int side;

• public:

• void set_side (int a)

• {side=a;}

• friend class CRectangle;

• };

• void CRectangle::convert (CSquare a) {

• width = a.side;

• height = a.side;

• }

• int main () {

• CSquare sqr;

• CRectangle rect;

• sqr.set_side(4);

• rect.convert(sqr);

• cout << rect.area();

• return 0;

• }

• we have declared CRectangle as a friend of
CSquare so that CRectangle member
functions couldhave access to the protected
and private members of CSquare, more
concretely to CSquare::side, which describes
the side width of the square.

