Friendship



Friendship

* |n principle, private and protected members
of a class cannot be accessed from outside the
same class in which they are declared.
However, this rule does not affect friends.



* If we want to declare an external function as
friend of a class, thus allowing this function
to have access to the private and protected
members of this class, we do it by declaring a
prototype of this external function within the

class, and preceding it with the keyword
friend:



friend functions
finclude <iostream>
using namespace std;

class CRectangle {
int width, hsight;
public:
vold set values (int, int);
int area () {return (width * hsight):}
Lriend CERectangle duplicate (CBectangls);

wvoid CRectangle::set values (int a, int b} {
width = a;
height = b;

CEectangle duplicate (CREectanglese rectparam)
{
CEsctangle rectres;
rectres.width = rectparam.width*2;
rectres.height = rectparam.height*2:
return (rectre3);

int main () {
CRectangle rect, recth;
rect.set valuesa (2,3):
recth = duplicate (rect);
cout << recth.arsail):
return 0;



class CRectangle {

int width, height;

public:

void set_values (int, int);

int area () {return (width * height);}
friend CRectangle duplicate (CRectangle);

b



void CRectangle::set_values (int a, int b) {
width = a;

height = b;

}

CRectangle duplicate (CRectangle rectparam)
{

CRectangle rectres;

rectres.width = rectparam.width*2;
rectres.height = rectparam.height*2;

return (rectres); }



int main () {
CRectangle rect, rectb;
rect.set_values (2,3);
rectb = duplicate (rect);
cout << rectb.area();
return 0;

}



* The duplicate function is a friend of
CRectangle. From within that function we
have been able to access the

* members width and height of different

objects of type CRectangle, which are private
members.



* Notice that neither in the declaration of
duplicate() nor in its later use in main() have
we considered duplicate a member

of class CRectangle. It isn't! It simply has
access to its private and protected members
without being a member.



* The duplicate function is a friend of
CRectangle. From within that function we
have been able to access the members width
and height of different objects of type
CRectangle, which are private members.



Friend classes

* Just as we have the possibility to define a
friend function, we can also define a class as
friend of another one, granting that first class
access to the protected and private members
of the second one.



i’/

friend class
finclude <iostream>
using namespace std;

class CSquare;

class CRectangle |
int width, height;
public:
int area ()
{return (width * height);}
void convert (CSguare a);

i

class CSguare {
private:
int side;
public:
void set side (int a)
[side=a;}
friend class CRectangle;

void CRectangle::convert (CSguare a)
width = a.sids;
height = a.side;

}

int main () |
CSquare sgr;
CRectangle rect;
sgr.set_sids (4);
rect.convert (sgr) ;
cout << rect.aresal);
return 0O;



e class CSquare;

 class CRectangle {

* int width, height;

* public:

* int area ()

* {return (width * height);}
* void convert (CSquare a);

* }



* class CSquare {

* private:

* intside;

e public:

* void set_side (int a)

e {side=a;}

* friend class CRectangle;

* }



void CRectangle::convert (CSquare a) {
width = a.side;
height = a.side;

}

int main () {
CSquare sqr;
CRectangle rect;
sgr.set_side(4);
rect.convert(sqr);
cout << rect.area();
return O;

}



 we have declared CRectangle as a friend of
CSquare so that CRectangle member
functions couldhave access to the protected
and private members of CSquare, more
concretely to CSquare::side, which describes
the side width of the square.



