Disk File /O with Streams



Stream Classes

* Astream is a general name given to a flow of
data. In C++ a stream is represented by an
object of a particular class.



The ios Class

* The ios class is the granddaddy of all the
stream classes, and contains the majority of
the features you need to operate C++
streams.

* The istream Class

 The istream class, which is derived from ios,
performs input-specific activities, or
extraction.



lists the functions you’ll most commonly use from the istream class.

Function Purpose

>> Formatted extraction for all basic (and overloaded) types.
get(ch); Extract one character into ch.

get(str) Extract characters into array str, until ‘\n’.

get(str, MAX)
get(str, DELIM)

get(str, MAX, DELIM)

getline(str, MAX, DELIM)

putback(ch)
ignore (MAX, DELIM)

peek(ch)

count = gcount()

read(str, MAX)
seekg()

seekg(pos, seek_dir)

pos = tellg(pos)

Extract up to MAX characters into array.

Extract characters into array str until specified delimiter
(typically “\n’). Leave delimiting char in stream.

Extract characters into array str until MAX characters or the
DELIM character. Leave delimiting char in stream.

Extract characters into array str, until MAX characters or the
DELIM character. Extract delimiting character.

Insert last character read back into input stream.

Extract and discard up to MAX characters until (and includ-
ing) the specified delimiter (typically *\n").

Read one character, leave it in stream.

Return number of characters read by a (immediately pre-
ceding) call to get(). getline(), or read().

For files—extract up to MAX characters into str, until EOF.
Set distance (in bytes) of file pointer from start of file.

Set distance (in bytes) of file pointer from specified place in
file. seek_dir can be ios::beg. i0s::cur. 10s: :end.

Return position (in bytes) of file pointer from start of file.




The ostream Class

* The ostream class handles output or
insertion activities.



Function Purpose

<< Formatted insertion for all basic (and overloaded) types.
put(ch) Insert character ch into stream.

flush() Flush buffer contents and insert newline.

write(str, SIZE) Insert SIZE characters from array str into file.
seekp(position) Set distance in bytes of file pointer from start of file.

seekp(position, seek_dir) Set distance in bytes of file pointer, from specified place in
file. seek_dir can be io0s::beg. i0s::cur., or 105: :end.

pos = tellp() Return position of file pointer, in bytes.




* Working with disk files requires another set
of classes: ifstream for input, fstream for
both input and output, and ofstream for
output. Objects of these classes can be
associated with disk files, and we can use
their member functions to read and write to
the files.



Writing Data

/] formato.cpp

// writes formatted output to a file, using <<
#include <fstream= [/for file I/0
#include <iostream=>

#include <string=

using namespace std;

int main()
{
char ¢ch = 'x';
int j = 77;
double d = 6.02;
string stri "Kafka"; //strings without
string str2 "Proust"; /1 embedded spaces

ofstream outfile("fdata.txt"); //create ofstream object

outfile << ch //insert (write) data
<< j
<< " ! //needs space between numbers
<<
<< stri
<< ' //needs spaces between strings
<< str2;

cout << "File written\n";

return 0;

}



 Here we define an object called outfile to be
a member of the ofstream class. At the same

* time, we initialize it to the file FDATA.TXT.
This initialization sets aside various resources
for thefile, and accesses or opens the file of
that name on the disk. If the file doesn’t
exist, it is created.



* The outfile object acts much as cout did in
previous programs, so we can use the
insertion operator (<<) to output

variables of any basic type to the file.

* When the program terminates, the outfile
object goes out of scope. This calls its
destructor,which closes the file, so we don’t
need to close the file explicitly.



Reading Data

* We can read the file generated by FORMATO
by using an ifstream object, initialized to the

name of the file.

The file is automatically opened when the
object is created. We can then read from it
using the extraction (>>) operator.



[/ formati.cpp

[/ reads formatted output from a file, using ==
#include <fstream= [/ for file I/0
#include <iostream=>

#include <string=

using namespace std;

int main()
{
char ch;
int j;
double d;
string stri;
string str2;

ifstream infile("fdata.txt"); //create ifstream object
//extract (read) data from it
infile =>> ch >> j =>> d >> stri1 >> str2;

cout << ch << endl //display the data
<< j << endl
<< d << endl
<< str1 << endl
<< §tr2 << endl;
return 0;

}



Here the ifstream object, which we name infile, acts much
the way cin did in previous programs.

Provided that we have formatted the data correctly when
inserting it into the file, there’s

no trouble extracting it, storing it in the appropriate
variables, and displaying its contents. The

program’s output looks like this:
X

77

6.02

Kafka

Proust



