
Introduction

Levels of Programming Languages

 1) Machine Language

– Consists of individual instructions that will be
executed by the CPU one at a time

 2) Assembly Language (Low Level Language)

– Designed for a specific family of processors
(different processor groups/family has different
Assembly Language)

– Consists of symbolic instructions directly related
to machine language instructions one-for-one
and are assembled into machine language.

3) High Level Languages

–e.g. : C, C++ and Vbasic

– Designed to eliminate the
technicalities of a particular
computer.

–Statements compiled in a high level
language typically generate many
low-level instructions.

Advantages of Assembly Language

1. Shows how program interfaces with the
processor, operating system, and BIOS.

2. Shows how data is represented and stored
in memory and on external devices.

3. Clarifies how processor accesses and
executes instructions and how instructions
access and process data.

4. Clarifies how a program accesses external
devices.

Reasons for using Assembly Language

1. A program written in Assembly Language
requires considerably less memory and execution
time than one written in a high –level language.

2. Assembly Language gives a programmer the
ability to perform highly technical tasks that
would be difficult, if not impossible in a high-
level language.

3. Although most software specialists develop new
applications in high-level languages, which are
easier to write and maintain, a common practice
is to recode in assembly language those sections
that are time-critical.

1. Resident programs (that reside in

memory while other program

execute) and interrupt service

routines (that handle input and

output) are almost always develop

in Assembly Language.

The Computer Organization - INTEL

PC

 (i) 8088

– Has 16-bit registers and 8-bit data bus

– Able to address up to 1 MB of internal memory

– Although registers can store up to 16-bits at a time

but the data bus is only able to transfer 8 bit data

at one time

(ii) 8086

– Is similar to 8088 but has a 16-bit data bus

and runs faster.

(iii) 80286

– Runs faster than 8086 and 8088

– Can address up to 16 MB of internal memory

– multitasking => more than 1 task can be ran

 simultaneously

(iv) 80386

– has 32-bit registers and 32-bit data bus

– can address up to 4 billion bytes. of memory

– support “virtual mode”, whereby it can swap
portions of memory onto disk: in this way,
programs running concurrently have space to
operate.

(v) 80486

– has 32-bit registers and 32-bit data bus

– the presence of CACHE

(vi) Pentium

– has 32-bit registers, 64-bit data bus

– has separate caches for data and instruction

– the processor can decode and execute more
than one

– instruction in one clock cycle (pipeline)

(vii) Pentium II & III

– has different paths to the cache and main
memory

In performing its task, the processor (CPU) is partitioned into
two logical units:

 1) An Execution Unit (EU)

 2) A Bus Interface Unit (BIU)

EU

– EU is responsible for program execution

– Contains of an Arithmetic Logic Unit (ALU), a Control
Unit (CU) and a number of registers

BIU

– Delivers data and instructions to the EU.

– manage the bus control unit, segment registers and
instruction queue.

– The BIU controls the buses that transfer the data to the
EU, to memory and to external input/output devices,
whereas the segment registers control memory
addressing.

EU and BIU work in parallel, with the BIU keeping

one step ahead. The EU will notify the BIU when

it needs to data in memory or an I/O device or

obtain instruction from the BIU instruction queue.

When EU executes an instruction, BIU will fetch the

next instruction from the memory and insert it into

to instruction queue.

