
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 2

Database System Concepts and

Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 2

Outline

 Data Models and Their Categories

 History of Data Models

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces

 Database System Utilities and Tools

 Centralized and Client-Server Architectures

 Classification of DBMSs

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 3

Data Models

 Data Model:

 A set of concepts to describe the structure of a database,

the operations for manipulating these structures, and

certain constraints that the database should obey.

 Data Model Structure and Constraints:

 Constructs are used to define the database structure

 Constructs typically include elements (and their data
types) as well as groups of elements (e.g. entity, record,
table), and relationships among such groups

 Constraints specify some restrictions on valid data; these

constraints must be enforced at all times

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 4

Data Models (continued)

 Data Model Operations:

 These operations are used for specifying database

retrievals and updates by referring to the

constructs of the data model.

 Operations on the data model may include basic
model operations (e.g. generic insert, delete,

update) and user-defined operations (e.g.

compute_student_gpa, update_inventory)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 5

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users
perceive data.

 (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored
in the computer. These are usually specified in an ad-hoc
manner through DBMS design and administration manuals

 Implementation (representational) data models:

 Provide concepts that fall between the above two, used by
many commercial DBMS implementations (e.g. relational
data models used in many commercial systems).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 6

Schemas versus Instances

 Database Schema:

 The description of a database.

 Includes descriptions of the database structure,
data types, and the constraints on the database.

 Schema Diagram:

 An illustrative display of (most aspects of) a
database schema.

 Schema Construct:

 A component of the schema or an object within
the schema, e.g., STUDENT, COURSE.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 7

Schemas versus Instances

 Database State:

 The actual data stored in a database at a

particular moment in time. This includes the

collection of all the data in the database.

 Also called database instance (or occurrence or

snapshot).

 The term instance is also applied to individual

database components, e.g. record instance, table
instance, entity instance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 8

Database Schema

vs. Database State

 Database State:

 Refers to the content of a database at a moment

in time.

 Initial Database State:

 Refers to the database state when it is initially

loaded into the system.

 Valid State:

 A state that satisfies the structure and constraints

of the database.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 9

Database Schema

vs. Database State (continued)

 Distinction

 The database schema changes very infrequently.

 The database state changes every time the

database is updated.

 Schema is also called intension.

 State is also called extension.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 10

Example of a Database Schema

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 11

Example of a database state

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 12

Three-Schema Architecture

 Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products,

but has been useful in explaining database

system organization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 13

Three-Schema Architecture

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical

storage structures and access paths (e.g indexes).

 Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the

structure and constraints for the whole database for a

community of users.

 Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the

various user views.

 Usually uses the same data model as the conceptual schema.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 14

The three-schema architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 15

Three-Schema Architecture

 Mappings among schema levels are needed to

transform requests and data.

 Programs refer to an external schema, and are

mapped by the DBMS to the internal schema for

execution.

 Data extracted from the internal DBMS level is

reformatted to match the user’s external view (e.g.

formatting the results of an SQL query for display

in a Web page)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 16

Data Independence

 Logical Data Independence:

 The capacity to change the conceptual schema
without having to change the external schemas
and their associated application programs.

 Physical Data Independence:

 The capacity to change the internal schema
without having to change the conceptual schema.

 For example, the internal schema may be changed
when certain file structures are reorganized or new
indexes are created to improve database
performance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 17

Data Independence (continued)

 When a schema at a lower level is changed, only

the mappings between this schema and higher-

level schemas need to be changed in a DBMS

that fully supports data independence.

 The higher-level schemas themselves are

unchanged.

 Hence, the application programs need not be

changed since they refer to the external schemas.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 18

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These

include the relational language SQL

 May be used in a standalone way or may be

embedded in a programming language

 Low Level or Procedural Languages:

 These must be embedded in a programming

language

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 19

DBMS Languages

 Data Definition Language (DDL):

 Used by the DBA and database designers to
specify the conceptual schema of a database.

 In many DBMSs, the DDL is also used to define
internal and external schemas (views).

 In some DBMSs, separate storage definition
language (SDL) and view definition language
(VDL) are used to define internal and external
schemas.

 SDL is typically realized via DBMS commands
provided to the DBA and database designers

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

DBMS Languages

 Data Manipulation Language (DML):

 Used to specify database retrievals and updates

 DML commands (data sublanguage) can be

embedded in a general-purpose programming

language (host language), such as COBOL, C,

C++, or Java.

 A library of functions can also be provided to access

the DBMS from a programming language

 Alternatively, stand-alone DML commands can be

applied directly (called a query language).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

Types of DML

 High Level or Non-procedural Language:

 For example, the SQL relational language

 Are “set”-oriented and specify what data to retrieve

rather than how to retrieve it.

 Also called declarative languages.

 Low Level or Procedural Language:

 Retrieve data one record-at-a-time;

 Constructs such as looping are needed to retrieve

multiple records, along with positioning pointers.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

DBMS Interfaces

 Stand-alone query language interfaces

 Example: Entering SQL queries at the DBMS

interactive SQL interface (e.g. SQL*Plus in

ORACLE)

 Programmer interfaces for embedding DML in

programming languages

 User-friendly interfaces

 Menu-based, forms-based, graphics-based, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 23

DBMS Programming Language Interfaces

 Programmer interfaces for embedding DML in a

programming languages:

 Embedded Approach: e.g embedded SQL (for C,

C++, etc.), SQLJ (for Java)

 Procedure Call Approach: e.g. JDBC for Java,

ODBC for other programming languages

 Database Programming Language Approach:

e.g. ORACLE has PL/SQL, a programming

language based on SQL; language incorporates

SQL and its data types as integral components

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 24

User-Friendly DBMS Interfaces

 Menu-based, popular for browsing on the web

 Forms-based, designed for naïve users

 Graphics-based

 (Point and Click, Drag and Drop, etc.)

 Natural language: requests in written English

 Combinations of the above:

 For example, both menus and forms used

extensively in Web database interfaces

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 25

Other DBMS Interfaces

 Speech as Input and Output

 Web Browser as an interface

 Parametric interfaces, e.g., bank tellers using

function keys.

 Interfaces for the DBA:

 Creating user accounts, granting authorizations

 Setting system parameters

 Changing schemas or access paths

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 26

Database System Utilities

 To perform certain functions such as:

 Loading data stored in files into a database.

Includes data conversion tools.

 Backing up the database periodically on tape.

 Reorganizing database file structures.

 Report generation utilities.

 Performance monitoring utilities.

 Other functions, such as sorting, user monitoring,

data compression, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 27

Other Tools

 Data dictionary / repository:

 Used to store schema descriptions and other

information such as design decisions, application

program descriptions, user information, usage

standards, etc.

 Active data dictionary is accessed by DBMS

software and users/DBA.

 Passive data dictionary is accessed by

users/DBA only.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 28

Other Tools

 Application Development Environments and

CASE (computer-aided software engineering)

tools:

 Examples:

 PowerBuilder (Sybase)

 JBuilder (Borland)

 JDeveloper 10G (Oracle)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 29

Typical DBMS Component Modules

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 30

Centralized and

Client-Server DBMS Architectures

 Centralized DBMS:

 Combines everything into single system including-

DBMS software, hardware, application programs,

and user interface processing software.

 User can still connect through a remote terminal –

however, all processing is done at centralized site.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 31

A Physical Centralized Architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 32

Basic 2-tier Client-Server Architectures

 Specialized Servers with Specialized functions

 Print server

 File server

 DBMS server

 Web server

 Email server

 Clients can access the specialized servers as

needed

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 33

Logical two-tier client server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 34

Clients

 Provide appropriate interfaces through a client

software module to access and utilize the various

server resources.

 Clients may be diskless machines or PCs or

Workstations with disks with only the client

software installed.

 Connected to the servers via some form of a

network.

 (LAN: local area network, wireless network, etc.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 35

DBMS Server

 Provides database query and transaction services to the
clients

 Relational DBMS servers are often called SQL servers,
query servers, or transaction servers

 Applications running on clients utilize an Application
Program Interface (API) to access server databases via
standard interface such as:

 ODBC: Open Database Connectivity standard

 JDBC: for Java programming access

 Client and server must install appropriate client module
and server module software for ODBC or JDBC

 See Chapter 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 36

Two Tier Client-Server Architecture

 A client program may connect to several DBMSs,

sometimes called the data sources.

 In general, data sources can be files or other

non-DBMS software that manages data.

 Other variations of clients are possible: e.g., in

some object DBMSs, more functionality is

transferred to clients including data dictionary

functions, optimization and recovery across

multiple servers, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 37

Three Tier Client-Server Architecture

 Common for Web applications

 Intermediate Layer called Application Server or Web

Server:

 Stores the web connectivity software and the business logic

part of the application used to access the corresponding

data from the database server

 Acts like a conduit for sending partially processed data

between the database server and the client.

 Three-tier Architecture Can Enhance Security:

 Database server only accessible via middle tier

 Clients cannot directly access database server

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 38

Three-tier client-server architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 39

Classification of DBMSs

 Based on the data model used

 Traditional: Relational, Network, Hierarchical.

 Emerging: Object-oriented, Object-relational.

 Other classifications

 Single-user (typically used with personal
computers)
vs. multi-user (most DBMSs).

 Centralized (uses a single computer with one
database)
vs. distributed (uses multiple computers, multiple
databases)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 40

Variations of Distributed DBMSs

(DDBMSs)

 Homogeneous DDBMS

 Heterogeneous DDBMS

 Federated or Multidatabase Systems

 Distributed Database Systems have now come to

be known as client-server based database

systems because:

 They do not support a totally distributed

environment, but rather a set of database servers

supporting a set of clients.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 41

Cost considerations for DBMSs

 Cost Range: from free open-source systems to
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, PostgreSQL,
others

 Commercial DBMS offer additional specialized modules,
e.g. time-series module, spatial data module, document
module, XML module

 These offer additional specialized functionality when
purchased separately

 Sometimes called cartridges (e.g., in Oracle) or blades

 Different licensing options: site license, maximum number
of concurrent users (seat license), single user, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 42

History of Data Models

 Network Model

 Hierarchical Model

 Relational Model

 Object-oriented Data Models

 Object-Relational Models

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 43

History of Data Models

 Network Model:

 The first network DBMS was implemented by
Honeywell in 1964-65 (IDS System).

 Adopted heavily due to the support by CODASYL
(Conference on Data Systems Languages)
(CODASYL - DBTG report of 1971).

 Later implemented in a large variety of systems -
IDMS (Cullinet - now Computer Associates), DMS
1100 (Unisys), IMAGE (H.P. (Hewlett-Packard)),
VAX -DBMS (Digital Equipment Corp., next
COMPAQ, now H.P.).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 44

Example of Network Model Schema

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 45

Network Model

 Advantages:

 Network Model is able to model complex
relationships and represents semantics of
add/delete on the relationships.

 Can handle most situations for modeling using
record types and relationship types.

 Language is navigational; uses constructs like
FIND, FIND member, FIND owner, FIND NEXT
within set, GET, etc.

 Programmers can do optimal navigation through the
database.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 46

Network Model

 Disadvantages:

 Navigational and procedural nature of processing

 Database contains a complex array of pointers

that thread through a set of records.

 Little scope for automated “query optimization”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 47

History of Data Models

 Hierarchical Data Model:

 Initially implemented in a joint effort by IBM and

North American Rockwell around 1965. Resulted

in the IMS family of systems.

 IBM’s IMS product had (and still has) a very large

customer base worldwide

 Hierarchical model was formalized based on the

IMS system

 Other systems based on this model: System 2k

(SAS inc.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 48

Hierarchical Model

 Advantages:

 Simple to construct and operate

 Corresponds to a number of natural hierarchically organized

domains, e.g., organization (“org”) chart

 Language is simple:

 Uses constructs like GET, GET UNIQUE, GET NEXT, GET

NEXT WITHIN PARENT, etc.

 Disadvantages:

 Navigational and procedural nature of processing

 Database is visualized as a linear arrangement of records

 Little scope for "query optimization"

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 49

History of Data Models

 Relational Model:

 Proposed in 1970 by E.F. Codd (IBM), first commercial

system in 1981-82.

 Now in several commercial products (e.g. DB2, ORACLE,

MS SQL Server, SYBASE, INFORMIX).

 Several free open source implementations, e.g. MySQL,

PostgreSQL

 Currently most dominant for developing database

applications.

 SQL relational standards: SQL-89 (SQL1), SQL-92 (SQL2),

SQL-99, SQL3, …

 Chapters 5 through 11 describe this model in detail

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 50

History of Data Models

 Object-oriented Data Models:

 Several models have been proposed for implementing in a

database system.

 One set comprises models of persistent O-O Programming

Languages such as C++ (e.g., in OBJECTSTORE or

VERSANT), and Smalltalk (e.g., in GEMSTONE).

 Additionally, systems like O2, ORION (at MCC - then

ITASCA), IRIS (at H.P.- used in Open OODB).

 Object Database Standard: ODMG-93, ODMG-version 2.0,

ODMG-version 3.0.

 Chapters 20 and 21 describe this model.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 51

History of Data Models

 Object-Relational Models:

 Most Recent Trend. Started with Informix

Universal Server.

 Relational systems incorporate concepts from

object databases leading to object-relational.

 Exemplified in the latest versions of Oracle-10i,

DB2, and SQL Server and other DBMSs.

 Standards included in SQL-99 and expected to be

enhanced in future SQL standards.

 Chapter 22 describes this model.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 52

Summary

 Data Models and Their Categories

 History of Data Models

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces

 Database System Utilities and Tools

 Centralized and Client-Server Architectures

 Classification of DBMSs

